ISE (Implicit Sample Extension) is a simple, efficient, and effective learning algorithm for unsupervised person Re-ID. ISE generates what we call support samples around the cluster boundaries. The sample generation process in ISE depends on two critical mechanisms, i.e., a progressive linear interpolation strategy and a label-preserving loss function. The generated support samples from ISE provide complementary information, which can nicely handle the "sub and mixed" clustering errors. ISE achieves superior performance than other unsupervised methods on Market1501 and MSMT17 datasets.
> [**Implicit Sample Extension for Unsupervised Person Re-Identification**](https://arxiv.org/abs/2204.06892v1)<br>
The main results on Market1501 (M) and MSMT17 (MS). PIL denotes the progressive linear interpolation strategy. LP represents the label-preserving loss function.