PaddleClas/ppcls/modeling/architectures/squeezenet.py

151 lines
5.7 KiB
Python
Raw Normal View History

2020-04-09 02:16:30 +08:00
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
__all__ = ["SqueezeNet1_0", "SqueezeNet1_1"]
2020-06-28 21:01:08 +08:00
class MakeFireConv(fluid.dygraph.Layer):
def __init__(self,
input_channels,
output_channels,
filter_size,
padding=0,
name=None):
2020-06-28 21:01:08 +08:00
super(MakeFireConv, self).__init__()
self._conv = Conv2D(input_channels,
output_channels,
filter_size,
padding=padding,
act="relu",
param_attr=ParamAttr(name=name + "_weights"),
bias_attr=ParamAttr(name=name + "_offset"))
def forward(self, inputs):
return self._conv(inputs)
2020-04-09 02:16:30 +08:00
2020-06-28 21:01:08 +08:00
class MakeFire(fluid.dygraph.Layer):
def __init__(self,
input_channels,
squeeze_channels,
expand1x1_channels,
expand3x3_channels,
name=None):
2020-06-28 21:01:08 +08:00
super(MakeFire, self).__init__()
self._conv = MakeFireConv(input_channels,
squeeze_channels,
1,
name=name + "_squeeze1x1")
2020-06-28 21:01:08 +08:00
self._conv_path1 = MakeFireConv(squeeze_channels,
expand1x1_channels,
1,
name=name + "_expand1x1")
2020-06-28 21:01:08 +08:00
self._conv_path2 = MakeFireConv(squeeze_channels,
expand3x3_channels,
3,
padding=1,
name=name + "_expand3x3")
2020-04-09 02:16:30 +08:00
def forward(self, inputs):
x = self._conv(inputs)
x1 = self._conv_path1(x)
x2 = self._conv_path2(x)
return fluid.layers.concat([x1, x2], axis=1)
2020-04-09 02:16:30 +08:00
class SqueezeNet(fluid.dygraph.Layer):
def __init__(self, version, class_dim=1000):
super(SqueezeNet, self).__init__()
2020-04-09 02:16:30 +08:00
self.version = version
if self.version == "1.0":
self._conv = Conv2D(3,
96,
7,
stride=2,
act="relu",
param_attr=ParamAttr(name="conv1_weights"),
bias_attr=ParamAttr(name="conv1_offset"))
self._pool = Pool2D(pool_size=3,
pool_stride=2,
pool_type="max")
2020-06-28 21:01:08 +08:00
self._conv1 = MakeFire(96, 16, 64, 64, name="fire2")
self._conv2 = MakeFire(128, 16, 64, 64, name="fire3")
self._conv3 = MakeFire(128, 32, 128, 128, name="fire4")
2020-06-28 21:01:08 +08:00
self._conv4 = MakeFire(256, 32, 128, 128, name="fire5")
self._conv5 = MakeFire(256, 48, 192, 192, name="fire6")
self._conv6 = MakeFire(384, 48, 192, 192, name="fire7")
self._conv7 = MakeFire(384, 64, 256, 256, name="fire8")
2020-06-28 21:01:08 +08:00
self._conv8 = MakeFire(512, 64, 256, 256, name="fire9")
2020-04-09 02:16:30 +08:00
else:
self._conv = Conv2D(3,
64,
3,
stride=2,
padding=1,
act="relu",
param_attr=ParamAttr(name="conv1_weights"),
bias_attr=ParamAttr(name="conv1_offset"))
self._pool = Pool2D(pool_size=3,
pool_stride=2,
pool_type="max")
2020-06-28 21:01:08 +08:00
self._conv1 = MakeFire(64, 16, 64, 64, name="fire2")
self._conv2 = MakeFire(128, 16, 64, 64, name="fire3")
2020-04-09 02:16:30 +08:00
2020-06-28 21:01:08 +08:00
self._conv3 = MakeFire(128, 32, 128, 128, name="fire4")
self._conv4 = MakeFire(256, 32, 128, 128, name="fire5")
2020-04-09 02:16:30 +08:00
2020-06-28 21:01:08 +08:00
self._conv5 = MakeFire(256, 48, 192, 192, name="fire6")
self._conv6 = MakeFire(384, 48, 192, 192, name="fire7")
self._conv7 = MakeFire(384, 64, 256, 256, name="fire8")
self._conv8 = MakeFire(512, 64, 256, 256, name="fire9")
self._drop = Dropout(p=0.5)
self._conv9 = Conv2D(512,
class_dim,
1,
act="relu",
param_attr=ParamAttr(name="conv10_weights"),
bias_attr=ParamAttr(name="conv10_offset"))
self._avg_pool = Pool2D(pool_type="avg",
global_pooling=True)
2020-04-09 02:16:30 +08:00
def forward(self, inputs):
x = self._conv(inputs)
x = self._pool(x)
if self.version=="1.0":
x = self._conv1(x)
x = self._conv2(x)
x = self._conv3(x)
x = self._pool(x)
x = self._conv4(x)
x = self._conv5(x)
x = self._conv6(x)
x = self._conv7(x)
x = self._pool(x)
x = self._conv8(x)
else:
x = self._conv1(x)
x = self._conv2(x)
x = self._pool(x)
x = self._conv3(x)
x = self._conv4(x)
x = self._pool(x)
x = self._conv5(x)
x = self._conv6(x)
x = self._conv7(x)
x = self._conv8(x)
x = self._drop(x)
x = self._conv9(x)
x = self._avg_pool(x)
x = fluid.layers.squeeze(x, axes=[2,3])
return x
2020-06-29 12:02:41 +08:00
def SqueezeNet1_0(**args):
model = SqueezeNet(version="1.0", **args)
return model
2020-04-09 02:16:30 +08:00
2020-06-29 12:02:41 +08:00
def SqueezeNet1_1(**args):
model = SqueezeNet(version="1.1", **args)
return model