PaddleClas/docs/zh_CN/models/Foundation_models/FoundationViT.md

60 lines
6.2 KiB
Markdown
Raw Normal View History

2023-02-07 12:43:49 +08:00
# Foundation ViT介绍文档
2023-02-07 12:42:12 +08:00
## 目录
1. [功能介绍](#1-功能介绍)
2. [使用说明](#2-使用说明)
3. [模型介绍](#3-模型介绍)
4. [参考文献](#4-参考文献)
## 1. 功能介绍
为支持视觉大模型的使用PaddleClas提供了各系列视觉大模型的预训练权重以及特征提取功能可使用该功能得到在大数据上完成预训练的视觉大模型特征。
## 2. 使用说明
以模型 `CLIP_vit_base_patch16_224`为例,使用该模型以及对应的预训练权重进行特征提取的代码如下:
2023-02-07 12:42:12 +08:00
```python
from ppcls.utils import config
from ppcls.arch import build_model
import paddle
2023-02-07 14:31:59 +08:00
pretrained = './paddle_weights/CLIP_vit_base_patch16_224.pdparams' # path to pretrained weight
cfg = {"Arch": {"name": "CLIP_vit_base_patch16_224"}}
2023-02-07 12:42:12 +08:00
model = build_model(cfg, mode="train")
model.set_state_dict(paddle.load(pretrained))
inputs = paddle.randn((1,3,224,224)) # create input
output = model(inputs) # the output of model embeding
```
## 3. 模型介绍
目前支持的视觉大模型以及预训练权重如下:
| 系列 | 模型 | 模型大小 | embedding_size | 预训练数据集 | 权重下载 |
| :----: | :--------------------------------: | :------: | :------------: | :----------------------------------------------: | -------------------------------------------------------------------------------------------------------------------------------- |
| CLIP | CLIP_vit_base_patch16_224 | 85M | 768 | WIT | [下载地址](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/CLIP_vit_base_patch16_224.pdparams) |
| CLIP | CLIP_vit_base_patch32_224 | 87M | 768 | WIT | [下载地址](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/CLIP_vit_base_patch32_224.pdparams) |
| CLIP | CLIP_vit_large_patch14_224 | 302M | 1024 | WIT | [下载地址](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/CLIP_vit_large_patch14_224.pdparams) |
| CLIP | CLIP_vit_large_patch14_336 | 302M | 1024 | WIT | [下载地址](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/CLIP_vit_large_patch14_336.pdparams) |
| BEiTv2 | BEiTv2_vit_base_patch16_224 | 85M | 768 | ImageNet-1k | [下载地址](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/BEiTv2_vit_base_patch16_224.pdparams) |
| BEiTv2 | BEiTv2_vit_base_patch16_224_ft21k | 85M | 768 | ImageNet-1k、ImageNet-21k | [下载地址](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/BEiTv2_vit_base_patch16_224_ft21k.pdparams) |
| BEiTv2 | BEiTv2_vit_large_patch16_224 | 303M | 1024 | ImageNet-1k | [下载地址](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/BEiTv2_vit_large_patch16_224.pdparams) |
| BEiTv2 | BEiTv2_vit_large_patch16_224_ft21k | 303M | 1024 | ImageNet-1k、ImageNet-21k | [下载地址](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/BEiTv2_vit_large_patch16_224_ft21k.pdparams) |
| MoCoV3 | MoCoV3_vit_small | 21M | 384 | ImageNet-1k | [下载地址](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/MoCoV3_vit_small.pdparams) |
| MoCoV3 | MoCoV3_vit_base | 85M | 768 | ImageNet-1k | [下载地址](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/MoCoV3_vit_base.pdparams) |
| MAE | MAE_vit_base_patch16 | 85M | 768 | ImageNet-1k | [下载地址](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/MAE_vit_base_patch16.pdparams) |
| MAE | MAE_vit_large_patch16 | 303M | 1024 | ImageNet-1k | [下载地址](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/MAE_vit_large_patch16.pdparams) |
| MAE | MAE_vit_huge_patch14 | 630M | 1280 | ImageNet-1k | [下载地址](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/MAE_vit_huge_patch14.pdparams) |
| EVA | EVA_vit_giant_patch14 | 1010M | 1408 | ImageNet-21k, CC12M, CC2M, Object365,COCO, ADE | [下载地址](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/EVA_vit_giant_patch14.pdparams) |
| CAE | CAE_vit_base_patch16_224 | 85M | 768 | ImageNet-1k | [下载地址](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/foundation_models/CAE_vit_base_patch16_224.pdparams) |
2023-02-07 12:42:12 +08:00
## 4. 参考文献
1. [MoCo v3: An Empirical Study of Training Self-Supervised Vision Transformers](https://arxiv.org/pdf/2104.02057.pdf)
2. [CLIP: Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020)
3. [BEiT v2: Masked Image Modeling with Vector-Quantized Visual Tokenizers](https://arxiv.org/abs/2208.06366)
4. [CAE: Context Autoencoder for Self-Supervised Representation Learning](https://arxiv.org/abs/2202.03026)
5. [EVA: EVA: Exploring the Limits of Masked Visual Representation Learning at Scale](https://paperswithcode.com/paper/eva-exploring-the-limits-of-masked-visual)
6. [MAE: Masked Autoencoders Are Scalable Vision Learners](https://paperswithcode.com/paper/masked-autoencoders-are-scalable-vision)