PaddleClas/docs/zh_CN/inference_deployment/paddle_lite_deploy.md

286 lines
13 KiB
Markdown
Raw Normal View History

2021-10-15 00:23:48 +08:00
# PaddleLite推理部署
2021-11-02 18:08:43 +08:00
---
2021-10-15 00:23:48 +08:00
2021-11-02 18:08:43 +08:00
本教程将介绍基于[Paddle Lite](https://github.com/PaddlePaddle/Paddle-Lite)在移动端部署 PaddleClas 分类模型的详细步骤。识别模型的部署将在近期支持,敬请期待。
2021-10-15 00:23:48 +08:00
2021-10-27 22:40:12 +08:00
Paddle Lite是飞桨轻量化推理引擎为手机、IOT端提供高效推理能力并广泛整合跨平台硬件为端侧部署及应用落地问题提供轻量化的部署方案。
<!-- TODO(gaotingquan): 下述 benchmark 文档在新文档结构中缺失 -->
<!-- 如果希望直接测试速度,可以参考[Paddle-Lite移动端benchmark测试教程](../../docs/zh_CN/extension/paddle_mobile_inference.md)。 -->
2021-10-15 00:23:48 +08:00
---
2021-11-02 18:08:43 +08:00
## 目录
- [准备环境](#1)
- [1.1 准备交叉编译环境](#1.1)
- [1.2 准备预测库](#1.2)
- [开始运行](#2)
- [2.1模型优化](#2.1)
- [2.1.1 pip安装paddlelite并进行转换](#2.1.1)
- [2.1.2 源码编译Paddle-Lite生成opt工具](#2.1.2)
- [2.1.3 转换示例](#2.1.3)
- [2.2与手机联调](#2.2)
- [FAQ](#3)
<a name="1"></a>
## 一、准备环境
2021-10-15 00:23:48 +08:00
Paddle Lite 目前支持以下平台部署:
* 电脑编译Paddle Lite
* 安卓手机armv7或armv8
2021-11-02 18:08:43 +08:00
<a name="1.1"></a>
2021-10-15 00:23:48 +08:00
### 1.1 准备交叉编译环境
交叉编译环境用于编译 Paddle Lite 和 PaddleClas 的 C++ demo。
2021-10-27 22:40:12 +08:00
支持多种开发环境,关于 Docker、Linux、macOS、Windows 等不同开发环境的编译流程请参考[文档](https://paddle-lite.readthedocs.io/zh/latest/source_compile/compile_env.html)。
2021-10-15 00:23:48 +08:00
2021-11-02 18:08:43 +08:00
<a name="1.2"></a>
2021-10-15 00:23:48 +08:00
### 1.2 准备预测库
预测库有两种获取方式:
1. [建议]直接下载,预测库下载链接如下:
|平台|预测库下载链接|
|-|-|
|Android|[arm7](https://paddlelite-data.bj.bcebos.com/Release/2.8-rc/Android/gcc/inference_lite_lib.android.armv7.gcc.c++_static.with_extra.with_cv.tar.gz) / [arm8](https://paddlelite-data.bj.bcebos.com/Release/2.8-rc/Android/gcc/inference_lite_lib.android.armv8.gcc.c++_static.with_extra.with_cv.tar.gz)|
|iOS|[arm7](https://paddlelite-data.bj.bcebos.com/Release/2.8-rc/iOS/inference_lite_lib.ios.armv7.with_cv.with_extra.tiny_publish.tar.gz) / [arm8](https://paddlelite-data.bj.bcebos.com/Release/2.8-rc/iOS/inference_lite_lib.ios.armv8.with_cv.with_extra.tiny_publish.tar.gz)|
**注**
1. 如果是从 Paddle-Lite [官方文档](https://paddle-lite.readthedocs.io/zh/latest/quick_start/release_lib.html#android-toolchain-gcc)下载的预测库,
注意选择 `with_extra=ONwith_cv=ON` 的下载链接。
2. 如果使用量化的模型部署在端侧,建议使用 Paddle-Lite develop 分支编译预测库。
2. 编译 Paddle-Lite 得到预测库Paddle-Lite 的编译方式如下:
```shell
git clone https://github.com/PaddlePaddle/Paddle-Lite.git
cd Paddle-Lite
# 如果使用编译方式建议使用develop分支编译预测库
git checkout develop
./lite/tools/build_android.sh --arch=armv8 --with_cv=ON --with_extra=ON
```
2021-10-27 22:40:12 +08:00
<!-- TODO(gaotingquan): 需要与lite同学确认该编译选项是否需要更新with_cv with_extra -->
<!-- https://paddle-lite.readthedocs.io/zh/latest/source_compile/compile_options.html -->
2021-10-15 00:23:48 +08:00
**注意**编译Paddle-Lite获得预测库时需要打开`--with_cv=ON --with_extra=ON`两个选项,`--arch`表示`arm`版本这里指定为armv8更多编译命令介绍请参考[链接](https://paddle-lite.readthedocs.io/zh/latest/user_guides/Compile/Android.html#id2)。
直接下载预测库并解压后,可以得到`inference_lite_lib.android.armv8/`文件夹通过编译Paddle-Lite得到的预测库位于`Paddle-Lite/build.lite.android.armv8.gcc/inference_lite_lib.android.armv8/`文件夹下。
预测库的文件目录如下:
```
inference_lite_lib.android.armv8/
|-- cxx C++ 预测库和头文件
| |-- include C++ 头文件
| | |-- paddle_api.h
| | |-- paddle_image_preprocess.h
| | |-- paddle_lite_factory_helper.h
| | |-- paddle_place.h
| | |-- paddle_use_kernels.h
| | |-- paddle_use_ops.h
| | `-- paddle_use_passes.h
| `-- lib C++预测库
| |-- libpaddle_api_light_bundled.a C++静态库
| `-- libpaddle_light_api_shared.so C++动态库
|-- java Java预测库
| |-- jar
| | `-- PaddlePredictor.jar
| |-- so
| | `-- libpaddle_lite_jni.so
| `-- src
|-- demo C++和Java示例代码
| |-- cxx C++ 预测库demo
| `-- java Java 预测库demo
```
2021-11-02 18:08:43 +08:00
<a name="2"></a>
## 二、开始运行
2021-10-15 00:23:48 +08:00
2021-11-02 18:08:43 +08:00
<a name="2.1"></a>
2021-10-15 00:23:48 +08:00
### 2.1 模型优化
Paddle-Lite 提供了多种策略来自动优化原始的模型其中包括量化、子图融合、混合精度、Kernel 优选等方法,使用 Paddle-Lite 的 `opt` 工具可以自动对 inference 模型进行优化,目前支持两种优化方式,优化后的模型更轻量,模型运行速度更快。在进行模型优化前,需要先准备 `opt` 优化工具,有以下两种方式。
**注意**:如果已经准备好了 `.nb` 结尾的模型文件,可以跳过此步骤。
2021-11-02 18:08:43 +08:00
<a name="2.1.1"></a>
2021-10-15 00:23:48 +08:00
#### 2.1.1 [建议]pip安装paddlelite并进行转换
Python下安装 `paddlelite`,目前最高支持 `Python3.7`
**注意**`paddlelite` whl包版本必须和预测库版本对应。
```shell
pip install paddlelite==2.8
```
之后使用 `paddle_lite_opt` 工具可以进行 inference 模型的转换。`paddle_lite_opt` 的部分参数如下
|选项|说明|
|-|-|
|--model_dir|待优化的PaddlePaddle模型非combined形式的路径|
|--model_file|待优化的PaddlePaddle模型combined形式的网络结构文件路径|
|--param_file|待优化的PaddlePaddle模型combined形式的权重文件路径|
|--optimize_out_type|输出模型类型目前支持两种类型protobuf和naive_buffer其中naive_buffer是一种更轻量级的序列化/反序列化实现。若您需要在mobile端执行模型预测请将此选项设置为naive_buffer。默认为protobuf|
|--optimize_out|优化模型的输出路径|
|--valid_targets|指定模型可执行的backend默认为arm。目前可支持x86、arm、opencl、npu、xpu可以同时指定多个backend(以空格分隔)Model Optimize Tool将会自动选择最佳方式。如果需要支持华为NPUKirin 810/990 Soc搭载的达芬奇架构NPU应当设置为npu, arm|
|--record_tailoring_info|当使用 根据模型裁剪库文件 功能时则设置该选项为true以记录优化后模型含有的kernel和OP信息默认为false|
`--model_file` 表示 inference 模型的 model 文件地址,`--param_file` 表示 inference 模型的 param 文件地址;`optimize_out` 用于指定输出文件的名称(不需要添加 `.nb` 的后缀)。直接在命令行中运行 `paddle_lite_opt`,也可以查看所有参数及其说明。
2021-11-02 18:08:43 +08:00
<a name="2.1.2"></a>
2021-10-15 00:23:48 +08:00
#### 2.1.2 源码编译Paddle-Lite生成opt工具
模型优化需要 Paddle-Lite 的 `opt` 可执行文件,可以通过编译 Paddle-Lite 源码获得,编译步骤如下:
```shell
# 如果准备环境时已经clone了Paddle-Lite则不用重新clone Paddle-Lite
git clone https://github.com/PaddlePaddle/Paddle-Lite.git
cd Paddle-Lite
git checkout develop
# 启动编译
./lite/tools/build.sh build_optimize_tool
```
编译完成后,`opt` 文件位于 `build.opt/lite/api/` 下,可通过如下方式查看 `opt` 的运行选项和使用方式:
```shell
cd build.opt/lite/api/
./opt
```
`opt` 的使用方式与参数与上面的 `paddle_lite_opt` 完全一致。
<a name="2.1.3"></a>
#### 2.1.3 转换示例
下面以PaddleClas的 `MobileNetV3_large_x1_0` 模型为例,介绍使用 `paddle_lite_opt` 完成预训练模型到inference模型再到 Paddle-Lite 优化模型的转换。
```shell
# 进入PaddleClas根目录
cd PaddleClas_root_path
# 下载并解压inference模型
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_large_x1_0_infer.tar
tar -xf MobileNetV3_large_x1_0_infer.tar
# 将inference模型转化为Paddle-Lite优化模型
paddle_lite_opt --model_file=./MobileNetV3_large_x1_0_infer/inference.pdmodel --param_file=./MobileNetV3_large_x1_0_infer/inference.pdiparams --optimize_out=./MobileNetV3_large_x1_0
```
最终在当前文件夹下生成 `MobileNetV3_large_x1_0.nb` 的文件。
**注意**`--optimize_out` 参数为优化后模型的保存路径,无需加后缀 `.nb``--model_file` 参数为模型结构信息文件的路径,`--param_file` 参数为模型权重信息文件的路径,请注意文件名。
2021-11-02 18:08:43 +08:00
<a name="2.2"></a>
2021-10-15 00:23:48 +08:00
### 2.2 与手机联调
首先需要进行一些准备工作。
1. 准备一台 arm8 的安卓手机,如果编译的预测库和 opt 文件是 armv7则需要 arm7 的手机,并修改 Makefile 中 `ARM_ABI = arm7`
2. 电脑上安装 ADB 工具,用于调试。 ADB安装方式如下
* MAC电脑安装ADB:
```shell
brew cask install android-platform-tools
```
* Linux安装ADB
```shell
sudo apt update
sudo apt install -y wget adb
```
* Window安装ADB
win上安装需要去谷歌的安卓平台下载ADB软件包进行安装[链接](https://developer.android.com/studio)
3. 手机连接电脑后,开启手机 `USB调试` 选项,选择 `文件传输` 模式,在电脑终端中输入:
```shell
adb devices
```
如果有 device 输出,则表示安装成功,如下所示:
```
List of devices attached
744be294 device
```
4. 准备优化后的模型、预测库文件、测试图像和类别映射文件。
```shell
cd PaddleClas_root_path
cd deploy/lite/
# 运行prepare.sh
# prepare.sh 会将预测库文件、测试图像和使用的字典文件放置在预测库中的demo/cxx/clas文件夹下
sh prepare.sh /{lite prediction library path}/inference_lite_lib.android.armv8
# 进入lite demo的工作目录
cd /{lite prediction library path}/inference_lite_lib.android.armv8/
cd demo/cxx/clas/
# 将C++预测动态库so文件复制到debug文件夹中
cp ../../../cxx/lib/libpaddle_light_api_shared.so ./debug/
```
`prepare.sh``PaddleClas/deploy/lite/imgs/tabby_cat.jpg` 作为测试图像,将测试图像复制到 `demo/cxx/clas/debug/` 文件夹下。
2021-10-27 22:40:12 +08:00
`paddle_lite_opt` 工具优化后的模型文件放置到 `/{lite prediction library path}/inference_lite_lib.android.armv8/demo/cxx/clas/debug/` 文件夹下。本例中,使用 [2.1.3 转换示例](#2.1.3) 生成的 `MobileNetV3_large_x1_0.nb` 模型文件。
2021-10-15 00:23:48 +08:00
执行完成后clas 文件夹下将有如下文件格式:
```
demo/cxx/clas/
|-- debug/
| |--MobileNetV3_large_x1_0.nb 优化后的分类器模型文件
| |--tabby_cat.jpg 待测试图像
| |--imagenet1k_label_list.txt 类别映射文件
| |--libpaddle_light_api_shared.so C++预测库文件
| |--config.txt 分类预测超参数配置
|-- config.txt 分类预测超参数配置
|-- image_classfication.cpp 图像分类代码文件
|-- Makefile 编译文件
```
#### 注意:
* 上述文件中,`imagenet1k_label_list.txt` 是 ImageNet1k 数据集的类别映射文件,如果使用自定义的类别,需要更换该类别映射文件。
* `config.txt` 包含了分类器的超参数,如下:
```shell
clas_model_file ./MobileNetV3_large_x1_0.nb # 模型文件地址
label_path ./imagenet1k_label_list.txt # 类别映射文本文件
resize_short_size 256 # resize之后的短边边长
crop_size 224 # 裁剪后用于预测的边长
visualize 0 # 是否进行可视化如果选择的话会在当前文件夹下生成名为clas_result.png的图像文件。
```
5. 启动调试上述步骤完成后就可以使用ADB将文件夹 `debug/` push 到手机上运行,步骤如下:
```shell
# 执行编译得到可执行文件clas_system
make -j
# 将编译得到的可执行文件移动到debug文件夹中
mv clas_system ./debug/
# 将上述debug文件夹push到手机上
adb push debug /data/local/tmp/
adb shell
cd /data/local/tmp/debug
export LD_LIBRARY_PATH=/data/local/tmp/debug:$LD_LIBRARY_PATH
# clas_system可执行文件的使用方式为:
# ./clas_system 配置文件路径 测试图像路径
./clas_system ./config.txt ./tabby_cat.jpg
```
如果对代码做了修改,则需要重新编译并 push 到手机上。
运行效果如下:
<div align="center">
2021-10-27 22:40:12 +08:00
<img src="../../images/inference_deployment/lite_demo_result.png" width="600">
2021-10-15 00:23:48 +08:00
</div>
2021-11-02 18:08:43 +08:00
<a name="3"></a>
## 三、FAQ
2021-10-15 00:23:48 +08:00
Q1如果想更换模型怎么办需要重新按照流程走一遍吗
A1如果已经走通了上述步骤更换模型只需要替换 `.nb` 模型文件即可,同时要注意修改下配置文件中的 `.nb` 文件路径以及类别映射文件(如有必要)。
Q2换一个图测试怎么做
A2替换 debug 下的测试图像为你想要测试的图像,使用 ADB 再次 push 到手机上即可。