2021-08-25 14:00:21 +08:00
|
|
|
#copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
#
|
|
|
|
#Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
#you may not use this file except in compliance with the License.
|
|
|
|
#You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
#Unless required by applicable law or agreed to in writing, software
|
|
|
|
#distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
#See the License for the specific language governing permissions and
|
|
|
|
#limitations under the License.
|
|
|
|
|
|
|
|
import paddle
|
|
|
|
import paddle.nn as nn
|
|
|
|
|
|
|
|
class DSHSDLoss(nn.Layer):
|
|
|
|
"""
|
|
|
|
# DSHSD(IEEE ACCESS 2019)
|
|
|
|
# paper [Deep Supervised Hashing Based on Stable Distribution](https://ieeexplore.ieee.org/document/8648432/)
|
|
|
|
# [DSHSD] epoch:70, bit:48, dataset:cifar10-1, MAP:0.809, Best MAP: 0.809
|
|
|
|
# [DSHSD] epoch:250, bit:48, dataset:nuswide_21, MAP:0.809, Best MAP: 0.815
|
|
|
|
# [DSHSD] epoch:135, bit:48, dataset:imagenet, MAP:0.647, Best MAP: 0.647
|
|
|
|
"""
|
|
|
|
def __init__(self, n_class, bit, alpha, multi_label=False):
|
|
|
|
super(DSHSDLoss, self).__init__()
|
|
|
|
self.m = 2 * bit
|
|
|
|
self.alpha = alpha
|
|
|
|
self.multi_label = multi_label
|
|
|
|
self.n_class = n_class
|
|
|
|
self.fc = paddle.nn.Linear(bit, n_class, bias_attr=False)
|
|
|
|
|
|
|
|
def forward(self, input, label):
|
|
|
|
feature = input["features"]
|
|
|
|
feature = feature.tanh().astype("float32")
|
|
|
|
|
|
|
|
dist = paddle.sum(
|
|
|
|
paddle.square((paddle.unsqueeze(feature, 1) - paddle.unsqueeze(feature, 0))),
|
|
|
|
axis=2)
|
|
|
|
|
|
|
|
# label to ont-hot
|
|
|
|
label = paddle.flatten(label)
|
|
|
|
label = paddle.nn.functional.one_hot(label, self.n_class).astype("float32")
|
|
|
|
|
|
|
|
s = (paddle.matmul(label, label, transpose_y=True) == 0).astype("float32")
|
|
|
|
Ld = (1 - s) / 2 * dist + s / 2 * (self.m - dist).clip(min=0)
|
|
|
|
Ld = Ld.mean()
|
|
|
|
|
|
|
|
logits = self.fc(feature)
|
|
|
|
if self.multi_label:
|
|
|
|
# multiple labels classification loss
|
|
|
|
Lc = (logits - label * logits + ((1 + (-logits).exp()).log())).sum(axis=1).mean()
|
|
|
|
else:
|
|
|
|
# single labels classification loss
|
|
|
|
Lc = (-paddle.nn.functional.softmax(logits).log() * label).sum(axis=1).mean()
|
|
|
|
|
|
|
|
return {"dshsdloss": Lc + Ld * self.alpha}
|
2021-08-25 13:59:54 +08:00
|
|
|
|
2021-08-25 14:04:50 +08:00
|
|
|
class LCDSHLoss(paddle.nn.Layer):
|
|
|
|
"""
|
|
|
|
# paper [Locality-Constrained Deep Supervised Hashing for Image Retrieval](https://www.ijcai.org/Proceedings/2017/0499.pdf)
|
|
|
|
# [LCDSH] epoch:145, bit:48, dataset:cifar10-1, MAP:0.798, Best MAP: 0.798
|
|
|
|
# [LCDSH] epoch:183, bit:48, dataset:nuswide_21, MAP:0.833, Best MAP: 0.834
|
|
|
|
"""
|
|
|
|
def __init__(self, n_class, _lambda):
|
|
|
|
super(LCDSHLoss, self).__init__()
|
|
|
|
self._lambda = _lambda
|
|
|
|
self.n_class = n_class
|
|
|
|
|
|
|
|
def forward(self, input, label):
|
|
|
|
feature = input["features"]
|
|
|
|
label = label.astype("float32")
|
|
|
|
|
|
|
|
# label to ont-hot
|
|
|
|
label = paddle.flatten(label)
|
|
|
|
label = paddle.nn.functional.one_hot(label, self.n_class).astype("float32")
|
|
|
|
|
|
|
|
s = 2 * (paddle.matmul(label, label, transpose_y=True) > 0).astype("float32") - 1
|
|
|
|
inner_product = paddle.matmul(feature, feature, transpose_y=True) * 0.5
|
|
|
|
|
|
|
|
inner_product = inner_product.clip(min=-50, max=50)
|
|
|
|
L1 = paddle.log(1 + paddle.exp(-s * inner_product)).mean()
|
|
|
|
|
|
|
|
b = feature.sign()
|
|
|
|
inner_product_ = paddle.matmul(b, b, transpose_y=True) * 0.5
|
|
|
|
sigmoid = paddle.nn.Sigmoid()
|
|
|
|
L2 = (sigmoid(inner_product) - sigmoid(inner_product_)).pow(2).mean()
|
|
|
|
|
|
|
|
return {"lcdshloss": L1 + self._lambda * L2}
|
|
|
|
|