PaddleClas/ppcls/engine/trainer.py

278 lines
11 KiB
Python
Raw Normal View History

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import numpy as np
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.abspath(os.path.join(__dir__, '../../')))
import argparse
import paddle
import paddle.nn as nn
import paddle.distributed as dist
from ppcls.utils import config
from ppcls.utils.check import check_gpu
from ppcls.utils.misc import AverageMeter
from ppcls.utils import logger
from ppcls.data import build_dataloader
from ppcls.arch import build_model
from ppcls.arch.loss_metrics import build_loss
from ppcls.arch.loss_metrics import build_metrics
from ppcls.optimizer import build_optimizer
from ppcls.utils import save_load
class Trainer(object):
def __init__(self, mode="train"):
args = config.parse_args()
self.config = config.get_config(
args.config, overrides=args.override, show=True)
self.mode = mode
self.output_dir = self.config['Global']['output_dir']
# set device
assert self.config["Global"]["device"] in ["cpu", "gpu", "xpu"]
self.device = paddle.set_device(self.config["Global"]["device"])
# set dist
self.config["Global"][
"distributed"] = paddle.distributed.get_world_size() != 1
if self.config["Global"]["distributed"]:
dist.init_parallel_env()
self.model = build_model(self.config["Arch"])
if self.config["Global"]["distributed"]:
self.model = paddle.DataParallel(self.model)
self.vdl_writer = None
if self.config['Global']['use_visualdl']:
from visualdl import LogWriter
vdl_writer_path = os.path.join(self.output_dir, "vdl")
if not os.path.exists(vdl_writer_path):
os.makedirs(vdl_writer_path)
self.vdl_writer = LogWriter(logdir=vdl_writer_path)
logger.info('train with paddle {} and device {}'.format(
paddle.__version__, self.device))
def _build_metric_info(self, metric_config, mode="train"):
"""
_build_metric_info: build metrics according to current mode
Return:
metric: dict of the metrics info
"""
metric = None
mode = mode.capitalize()
if mode in metric_config and metric_config[mode] is not None:
metric = build_metrics(metric_config[mode])
return metric
def _build_loss_info(self, loss_config, mode="train"):
"""
_build_loss_info: build loss according to current mode
Return:
loss_dict: dict of the loss info
"""
loss = None
mode = mode.capitalize()
if mode in loss_config and loss_config[mode] is not None:
loss = build_loss(loss_config[mode])
return loss
def train(self):
# build train loss and metric info
loss_func = self._build_loss_info(self.config["Loss"])
metric_func = self._build_metric_info(self.config["Metric"])
train_dataloader = build_dataloader(self.config["DataLoader"], "train",
self.device)
step_each_epoch = len(train_dataloader)
optimizer, lr_sch = build_optimizer(self.config["Optimizer"],
self.config["Global"]["epochs"],
step_each_epoch,
self.model.parameters())
print_batch_step = self.config['Global']['print_batch_step']
save_interval = self.config["Global"]["save_interval"]
best_metric = {
"metric": 0.0,
"epoch": 0,
}
# key:
# val: metrics list word
output_info = dict()
# global iter counter
global_step = 0
for epoch_id in range(1, self.config["Global"]["epochs"] + 1):
self.model.train()
for iter_id, batch in enumerate(train_dataloader()):
batch_size = batch[0].shape[0]
batch[1] = paddle.to_tensor(batch[1].numpy().astype("int64")
.reshape([-1, 1]))
global_step += 1
# image input
out = self.model(batch[0])
# calc loss
loss_dict = loss_func(out, batch[-1])
for key in loss_dict:
if not key in output_info:
output_info[key] = AverageMeter(key, '7.5f')
output_info[key].update(loss_dict[key].numpy()[0],
batch_size)
# calc metric
if metric_func is not None:
metric_dict = metric_func(out, batch[-1])
for key in metric_dict:
if not key in output_info:
output_info[key] = AverageMeter(key, '7.5f')
output_info[key].update(metric_dict[key].numpy()[0],
batch_size)
if iter_id % print_batch_step == 0:
lr_msg = "lr: {:.5f}".format(lr_sch.get_lr())
metric_msg = ", ".join([
"{}: {:.5f}".format(key, output_info[key].avg)
for key in output_info
])
logger.info("[Train][Epoch {}][Iter: {}/{}]{}, {}".format(
epoch_id, iter_id,
len(train_dataloader), lr_msg, metric_msg))
# step opt and lr
loss_dict["loss"].backward()
optimizer.step()
optimizer.clear_grad()
lr_sch.step()
metric_msg = ", ".join([
"{}: {:.5f}".format(key, output_info[key].avg)
for key in output_info
])
logger.info("[Train][Epoch {}][Avg]{}".format(epoch_id,
metric_msg))
output_info.clear()
# eval model and save model if possible
if self.config["Global"][
"eval_during_train"] and epoch_id % self.config["Global"][
"eval_during_train"] == 0:
acc = self.eval(epoch_id)
if acc >= best_metric["metric"]:
best_metric["metric"] = acc
best_metric["epoch"] = epoch_id
save_load.save_model(
self.model,
optimizer,
self.output_dir,
model_name=self.config["Arch"]["name"],
prefix="best_model")
# save model
if epoch_id % save_interval == 0:
save_load.save_model(
self.model,
optimizer,
self.output_dir,
model_name=self.config["Arch"]["name"],
prefix="ppcls_epoch_{}".format(epoch_id))
def build_avg_metrics(self, info_dict):
return {key: AverageMeter(key, '7.5f') for key in info_dict}
@paddle.no_grad()
def eval(self, epoch_id=0):
output_info = dict()
eval_dataloader = build_dataloader(self.config["DataLoader"], "eval",
self.device)
self.model.eval()
print_batch_step = self.config["Global"]["print_batch_step"]
# build train loss and metric info
loss_func = self._build_loss_info(self.config["Loss"], "eval")
metric_func = self._build_metric_info(self.config["Metric"], "eval")
metric_key = None
for iter_id, batch in enumerate(eval_dataloader()):
batch_size = batch[0].shape[0]
batch[0] = paddle.to_tensor(batch[0]).astype("float32")
batch[1] = paddle.to_tensor(batch[1]).reshape([-1, 1])
# image input
out = self.model(batch[0])
# calc build
if loss_func is not None:
loss_dict = loss_func(out, batch[-1])
for key in loss_dict:
if not key in output_info:
output_info[key] = AverageMeter(key, '7.5f')
output_info[key].update(loss_dict[key].numpy()[0],
batch_size)
# calc metric
if metric_func is not None:
metric_dict = metric_func(out, batch[-1])
if paddle.distributed.get_world_size() > 1:
for key in metric_dict:
paddle.distributed.all_reduce(
metric_dict[key],
op=paddle.distributed.ReduceOp.SUM)
metric_dict[key] = metric_dict[
key] / paddle.distributed.get_world_size()
for key in metric_dict:
if metric_key is None:
metric_key = key
if not key in output_info:
output_info[key] = AverageMeter(key, '7.5f')
output_info[key].update(metric_dict[key].numpy()[0],
batch_size)
if iter_id % print_batch_step == 0:
metric_msg = ", ".join([
"{}: {:.5f}".format(key, output_info[key].val)
for key in output_info
])
logger.info("[Eval][Epoch {}][Iter: {}/{}]{}".format(
epoch_id, iter_id, len(eval_dataloader), metric_msg))
metric_msg = ", ".join([
"{}: {:.5f}".format(key, output_info[key].avg)
for key in output_info
])
logger.info("[Eval][Epoch {}][Avg]{}".format(epoch_id, metric_msg))
self.model.train()
# do not try to save best model
if metric_func is None:
return -1
# return 1st metric in the dict
return output_info[metric_key].avg
def main():
trainer = Trainer()
trainer.train()
if __name__ == "__main__":
main()