2020-04-10 00:45:02 +08:00
|
|
|
|
# 开始使用
|
|
|
|
|
---
|
|
|
|
|
请事先参考[安装指南](install.md)配置运行环境
|
2020-04-15 18:54:00 +08:00
|
|
|
|
有关模型库的基本信息请参考[README](https://github.com/PaddlePaddle/PaddleClas/blob/master/README.md)
|
2020-04-10 00:45:02 +08:00
|
|
|
|
|
2020-04-10 20:57:20 +08:00
|
|
|
|
## 一、设置环境变量
|
2020-04-10 00:45:02 +08:00
|
|
|
|
|
|
|
|
|
**设置PYTHONPATH环境变量:**
|
|
|
|
|
|
|
|
|
|
```bash
|
|
|
|
|
export PYTHONPATH=path_to_PaddleClas:$PYTHONPATH
|
|
|
|
|
```
|
|
|
|
|
|
2020-04-10 20:57:20 +08:00
|
|
|
|
## 二、模型训练与评估
|
2020-04-10 00:45:02 +08:00
|
|
|
|
|
|
|
|
|
PaddleClas 提供模型训练与评估脚本:tools/train.py和tools/eval.py
|
|
|
|
|
|
|
|
|
|
### 2.1 模型训练
|
|
|
|
|
```bash
|
|
|
|
|
# PaddleClas通过launch方式启动多卡多进程训练
|
|
|
|
|
# 通过设置FLAGS_selected_gpus 指定GPU运行卡号
|
|
|
|
|
|
|
|
|
|
python -m paddle.distributed.launch \
|
|
|
|
|
--selected_gpus="0,1,2,3" \
|
|
|
|
|
--log_dir=log_ResNet50 \
|
2020-04-11 02:04:24 +08:00
|
|
|
|
tools/train.py \
|
|
|
|
|
-c ./configs/ResNet/ResNet50.yaml
|
2020-04-10 00:45:02 +08:00
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
- 输出日志示例如下:
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
epoch:0 train step:13 loss:7.9561 top1:0.0156 top5:0.1094 lr:0.100000 elapse:0.193
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
可以通过添加-o参数来更新配置
|
|
|
|
|
|
|
|
|
|
```bash
|
|
|
|
|
python -m paddle.distributed.launch \
|
|
|
|
|
--selected_gpus="0,1,2,3" \
|
|
|
|
|
--log_dir=log_ResNet50_vd \
|
2020-04-11 02:04:24 +08:00
|
|
|
|
tools/train.py \
|
2020-04-10 17:19:48 +08:00
|
|
|
|
-c ./configs/ResNet/ResNet50_vd.yaml \
|
2020-04-11 02:04:24 +08:00
|
|
|
|
-o use_mix=1
|
2020-04-10 00:45:02 +08:00
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
- 输出日志示例如下:
|
|
|
|
|
|
|
|
|
|
```
|
|
|
|
|
epoch:0 train step:522 loss:1.6330 lr:0.100000 elapse:0.210
|
|
|
|
|
```
|
|
|
|
|
|
|
|
|
|
或是直接修改模型对应的yaml配置文件,具体配置参数参考[配置文档](config.md)。
|
|
|
|
|
|
2020-04-14 00:44:53 +08:00
|
|
|
|
### 2.3 模型微调
|
|
|
|
|
|
|
|
|
|
您可以通过如下命令进行模型微调,通过指定--pretrained_model参数加载预训练模型
|
|
|
|
|
|
|
|
|
|
```bash
|
|
|
|
|
python -m paddle.distributed.launch \
|
|
|
|
|
--selected_gpus="0,1,2,3" \
|
|
|
|
|
--log_dir=log_ResNet50_vd \
|
|
|
|
|
train.py \
|
|
|
|
|
-c ../configs/ResNet/ResNet50_vd.yaml \
|
|
|
|
|
-o pretrained_model= 预训练模型路径\
|
|
|
|
|
|
|
|
|
|
```
|
2020-04-10 00:45:02 +08:00
|
|
|
|
|
|
|
|
|
### 2.2 模型评估
|
|
|
|
|
|
|
|
|
|
```bash
|
2020-04-11 02:04:24 +08:00
|
|
|
|
python tools/eval.py \
|
2020-04-10 17:19:48 +08:00
|
|
|
|
-c ./configs/eval.yaml \
|
2020-04-10 00:45:02 +08:00
|
|
|
|
-o architecture="ResNet50_vd" \
|
|
|
|
|
-o pretrained_model=path_to_pretrained_models
|
|
|
|
|
```
|
|
|
|
|
您可以更改configs/eval.yaml中的architecture字段和pretrained_model字段来配置评估模型,或是通过-o参数更新配置。
|
2020-04-10 17:19:21 +08:00
|
|
|
|
|
2020-04-10 21:43:45 +08:00
|
|
|
|
## 三、模型推理
|
2020-04-10 17:19:21 +08:00
|
|
|
|
|
2020-04-10 19:56:49 +08:00
|
|
|
|
PaddlePaddle提供三种方式进行预测推理,接下来介绍如何用预测引擎进行推理:
|
2020-04-10 21:36:20 +08:00
|
|
|
|
首先,对训练好的模型进行转换
|
2020-04-10 19:56:49 +08:00
|
|
|
|
```bash
|
|
|
|
|
python tools/export_model.py \
|
|
|
|
|
-model=模型名字 \
|
|
|
|
|
-pretrained_model=预训练模型路径 \
|
|
|
|
|
-output_path=预测模型保存路径
|
2020-04-10 17:19:21 +08:00
|
|
|
|
|
2020-04-10 19:56:49 +08:00
|
|
|
|
```
|
|
|
|
|
之后,通过预测引擎进行推理
|
2020-04-10 17:19:21 +08:00
|
|
|
|
```bash
|
2020-04-11 02:04:24 +08:00
|
|
|
|
python tools/infer/predict.py \
|
2020-04-10 19:56:49 +08:00
|
|
|
|
-m model文件路径 \
|
|
|
|
|
-p params文件路径 \
|
|
|
|
|
-i 图片路径 \
|
|
|
|
|
--use_gpu=1 \
|
|
|
|
|
--use_tensorrt=True
|
2020-04-10 17:19:21 +08:00
|
|
|
|
```
|
2020-04-10 21:36:20 +08:00
|
|
|
|
更多使用方法和推理方式请参考[分类预测框架](../extension/paddle_inference.md)
|