PaddleClas/ppcls/utils/save_load.py

152 lines
5.4 KiB
Python
Raw Normal View History

2020-04-09 02:16:30 +08:00
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
2020-05-03 17:21:07 +08:00
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
2020-04-09 02:16:30 +08:00
#
# http://www.apache.org/licenses/LICENSE-2.0
#
2020-05-03 17:21:07 +08:00
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
2020-04-09 02:16:30 +08:00
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
2020-04-11 01:20:33 +08:00
import errno
2020-04-09 02:16:30 +08:00
import os
2020-05-04 15:01:22 +08:00
import re
2020-04-09 02:16:30 +08:00
import shutil
2020-04-11 01:20:33 +08:00
import tempfile
2020-04-09 02:16:30 +08:00
2020-09-15 17:43:19 +08:00
import paddle
2020-04-09 02:16:30 +08:00
from ppcls.utils import logger
from .download import get_weights_path_from_url
2020-04-09 02:16:30 +08:00
2020-08-28 17:43:27 +08:00
__all__ = ['init_model', 'save_model', 'load_dygraph_pretrain']
2020-04-09 02:16:30 +08:00
def _mkdir_if_not_exist(path):
"""
2020-04-11 01:21:31 +08:00
mkdir if not exists, ignore the exception when multiprocess mkdir together
2020-04-09 02:16:30 +08:00
"""
2020-04-11 01:20:33 +08:00
if not os.path.exists(path):
try:
os.makedirs(path)
except OSError as e:
if e.errno == errno.EEXIST and os.path.isdir(path):
logger.warning(
'be happy if some process has already created {}'.format(
path))
else:
2020-04-11 01:22:14 +08:00
raise OSError('Failed to mkdir {}'.format(path))
2020-04-09 02:16:30 +08:00
def load_dygraph_pretrain(model, path=None):
2020-04-09 02:16:30 +08:00
if not (os.path.isdir(path) or os.path.exists(path + '.pdparams')):
raise ValueError("Model pretrain path {} does not "
"exists.".format(path))
param_state_dict = paddle.load(path + ".pdparams")
2020-08-28 17:43:27 +08:00
model.set_dict(param_state_dict)
return
2020-04-09 02:16:30 +08:00
def load_dygraph_pretrain_from_url(model, pretrained_url, use_ssld):
if use_ssld:
pretrained_url = pretrained_url.replace("_pretrained",
"_ssld_pretrained")
local_weight_path = get_weights_path_from_url(pretrained_url).replace(
".pdparams", "")
load_dygraph_pretrain(model, path=local_weight_path)
return
def load_distillation_model(model, pretrained_model):
2020-09-03 11:22:39 +08:00
logger.info("In distillation mode, teacher model will be "
2020-09-03 11:24:22 +08:00
"loaded firstly before student model.")
2021-01-19 18:49:30 +08:00
if not isinstance(pretrained_model, list):
pretrained_model = [pretrained_model]
teacher = model.teacher if hasattr(model,
"teacher") else model._layers.teacher
student = model.student if hasattr(model,
"student") else model._layers.student
load_dygraph_pretrain(teacher, path=pretrained_model[0])
2021-01-19 18:49:30 +08:00
logger.info("Finish initing teacher model from {}".format(
pretrained_model))
# load student model
if len(pretrained_model) >= 2:
load_dygraph_pretrain(student, path=pretrained_model[1])
2021-01-19 18:49:30 +08:00
logger.info("Finish initing student model from {}".format(
pretrained_model))
2020-09-03 11:22:39 +08:00
2020-09-03 11:24:22 +08:00
2020-08-28 17:43:27 +08:00
def init_model(config, net, optimizer=None):
2020-04-09 02:16:30 +08:00
"""
2020-04-09 23:06:58 +08:00
load model from checkpoint or pretrained_model
2020-04-09 02:16:30 +08:00
"""
checkpoints = config.get('checkpoints')
if checkpoints and optimizer is not None:
2020-06-12 10:55:05 +08:00
assert os.path.exists(checkpoints + ".pdparams"), \
"Given dir {}.pdparams not exist.".format(checkpoints)
assert os.path.exists(checkpoints + ".pdopt"), \
"Given dir {}.pdopt not exist.".format(checkpoints)
para_dict = paddle.load(checkpoints + ".pdparams")
opti_dict = paddle.load(checkpoints + ".pdopt")
metric_dict = paddle.load(checkpoints + ".pdstates")
2020-06-12 10:55:05 +08:00
net.set_dict(para_dict)
2020-10-22 14:12:03 +08:00
optimizer.set_state_dict(opti_dict)
logger.info("Finish load checkpoints from {}".format(checkpoints))
return metric_dict
2020-04-09 02:16:30 +08:00
pretrained_model = config.get('pretrained_model')
2020-08-28 17:43:27 +08:00
use_distillation = config.get('use_distillation', False)
2020-04-09 23:06:58 +08:00
if pretrained_model:
2021-01-19 18:49:30 +08:00
if use_distillation:
load_distillation_model(net, pretrained_model)
2020-09-03 11:24:22 +08:00
else: # common load
load_dygraph_pretrain(net, path=pretrained_model)
2020-08-28 17:43:27 +08:00
logger.info(
logger.coloring("Finish load pretrained model from {}".format(
2020-08-28 17:43:27 +08:00
pretrained_model), "HEADER"))
2020-04-09 02:16:30 +08:00
def _save_student_model(net, model_prefix):
"""
save student model if the net is the network contains student
"""
student_model_prefix = model_prefix + "_student.pdparams"
if hasattr(net, "_layers"):
net = net._layers
if hasattr(net, "student"):
paddle.save(net.student.state_dict(), student_model_prefix)
logger.info("Already save student model in {}".format(
student_model_prefix))
def save_model(net,
optimizer,
metric_info,
model_path,
model_name="",
prefix='ppcls'):
2020-04-09 02:16:30 +08:00
"""
2020-04-09 23:06:58 +08:00
save model to the target path
2020-04-09 02:16:30 +08:00
"""
if paddle.distributed.get_rank() != 0:
return
model_path = os.path.join(model_path, model_name)
2020-04-09 02:16:30 +08:00
_mkdir_if_not_exist(model_path)
model_prefix = os.path.join(model_path, prefix)
2020-06-12 10:55:05 +08:00
_save_student_model(net, model_prefix)
paddle.save(net.state_dict(), model_prefix + ".pdparams")
paddle.save(optimizer.state_dict(), model_prefix + ".pdopt")
paddle.save(metric_info, model_prefix + ".pdstates")
logger.info("Already save model in {}".format(model_path))