2022-06-02 18:42:24 +08:00
# Linux GPU/CPU PYTHON 服务化部署测试
2022-06-14 10:51:17 +08:00
Linux GPU/CPU PYTHON 服务化部署测试的主程序为`test_serving_infer_python.sh`, 可以测试基于Python的模型服务化部署功能。
2022-06-02 18:42:24 +08:00
## 1. 测试结论汇总
- 推理相关:
| 算法名称 | 模型名称 | device_CPU | device_GPU |
| :----: | :----: | :----: | :----: |
| MobileNetV3 | MobileNetV3_large_x1_0 | 支持 | 支持 |
| PP-ShiTu | PPShiTu_general_rec、PPShiTu_mainbody_det | 支持 | 支持 |
| PPHGNet | PPHGNet_small | 支持 | 支持 |
| PPHGNet | PPHGNet_tiny | 支持 | 支持 |
2022-06-02 22:17:18 +08:00
| PPLCNet | PPLCNet_x0_25 | 支持 | 支持 |
| PPLCNet | PPLCNet_x0_35 | 支持 | 支持 |
| PPLCNet | PPLCNet_x0_5 | 支持 | 支持 |
| PPLCNet | PPLCNet_x0_75 | 支持 | 支持 |
| PPLCNet | PPLCNet_x1_0 | 支持 | 支持 |
| PPLCNet | PPLCNet_x1_5 | 支持 | 支持 |
| PPLCNet | PPLCNet_x2_0 | 支持 | 支持 |
| PPLCNet | PPLCNet_x2_5 | 支持 | 支持 |
| PPLCNetV2 | PPLCNetV2_base | 支持 | 支持 |
2022-06-02 18:42:24 +08:00
| ResNet | ResNet50 | 支持 | 支持 |
| ResNet | ResNet50_vd | 支持 | 支持 |
| SwinTransformer | SwinTransformer_tiny_patch4_window7_224 | 支持 | 支持 |
## 2. 测试流程
### 2.1 准备数据
分类模型默认使用`./deploy/paddleserving/daisy.jpg`作为测试输入图片,无需下载
识别模型默认使用`drink_dataset_v1.0/test_images/001.jpeg`作为测试输入图片,在**2.2 准备环境**中会下载好。
### 2.2 准备环境
- 安装PaddlePaddle: 如果您已经安装了2.2或者以上版本的paddlepaddle, 那么无需运行下面的命令安装paddlepaddle。
```shell
# 需要安装2.2及以上版本的Paddle
# 安装GPU版本的Paddle
python3.7 -m pip install paddlepaddle-gpu==2.2.0
# 安装CPU版本的Paddle
python3.7 -m pip install paddlepaddle==2.2.0
```
- 安装依赖
```shell
python3.7 -m pip install -r requirements.txt
```
2022-06-02 22:17:18 +08:00
- 安装 PaddleServing 相关组件, 包括serving-server、serving_client、serving-app, 自动下载并解压推理模型
2022-06-02 18:42:24 +08:00
```bash
bash test_tipc/prepare.sh test_tipc/configs/ResNet50/ResNet50_linux_gpu_normal_normal_serving_python_linux_gpu_cpu.txt serving_infer
```
### 2.3 功能测试
测试方法如下所示,希望测试不同的模型文件,只需更换为自己的参数配置文件,即可完成对应模型的测试。
```bash
2022-06-14 10:51:17 +08:00
bash test_tipc/test_serving_infer_python.sh ${your_params_file}
2022-06-02 18:42:24 +08:00
```
以`ResNet50`的`Linux GPU/CPU PYTHON 服务化部署测试`为例,命令如下所示。
```bash
2022-06-14 10:51:17 +08:00
bash test_tipc/test_serving_infer_python.sh test_tipc/configs/ResNet50/ResNet50_linux_gpu_normal_normal_serving_python_linux_gpu_cpu.txt
2022-06-02 18:42:24 +08:00
```
输出结果如下,表示命令运行成功。
```
Run successfully with command - python3.7 pipeline_http_client.py > ../../test_tipc/output/ResNet50/server_infer_gpu_pipeline_http_batchsize_1.log 2>& 1!
Run successfully with command - python3.7 pipeline_http_client.py > ../../test_tipc/output/ResNet50/server_infer_cpu_pipeline_http_batchsize_1.log 2>& 1 !
```
预测结果会自动保存在 `./test_tipc/output/ResNet50/server_infer_gpu_pipeline_http_batchsize_1.log` ,可以看到 PaddleServing 的运行结果:
```
{'err_no': 0, 'err_msg': '', 'key': ['label', 'prob'], 'value': ["['daisy']", '[0.998314619064331]']}
```
如果运行失败,也会在终端中输出运行失败的日志信息以及对应的运行命令。可以基于该命令,分析运行失败的原因。