326 lines
11 KiB
Python
Raw Normal View History

2020-06-11 11:18:13 +00:00
from __future__ import absolute_import
2020-06-11 17:56:27 +08:00
from __future__ import division
from __future__ import print_function
import math
2020-06-11 11:18:13 +00:00
import paddle.fluid as fluid
2020-06-11 17:56:27 +08:00
from paddle.fluid.param_attr import ParamAttr
__all__ = ["GhostNet", "GhostNet_0_5", "GhostNet_1_0", "GhostNet_1_3"]
2020-06-11 11:18:13 +00:00
2020-06-11 17:56:27 +08:00
class GhostNet():
def __init__(self, width_mult):
cfgs = [
2020-06-11 11:18:13 +00:00
# k, t, c, SE, s
[3, 16, 16, 0, 1],
[3, 48, 24, 0, 2],
[3, 72, 24, 0, 1],
[5, 72, 40, 1, 2],
[5, 120, 40, 1, 1],
[3, 240, 80, 0, 2],
[3, 200, 80, 0, 1],
[3, 184, 80, 0, 1],
[3, 184, 80, 0, 1],
[3, 480, 112, 1, 1],
[3, 672, 112, 1, 1],
[5, 672, 160, 1, 2],
[5, 960, 160, 0, 1],
[5, 960, 160, 1, 1],
[5, 960, 160, 0, 1],
[5, 960, 160, 1, 1]
]
2020-06-11 17:56:27 +08:00
self.cfgs = cfgs
self.width_mult = width_mult
2020-06-11 11:18:13 +00:00
2020-06-11 17:56:27 +08:00
def _make_divisible(self, v, divisor, min_value=None):
"""
This function is taken from the original tf repo.
It ensures that all layers have a channel number that is divisible by 8
It can be seen here:
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
"""
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
2020-06-11 11:18:13 +00:00
def conv_bn_layer(self,
input,
2020-06-11 17:56:27 +08:00
num_filters,
filter_size,
stride=1,
groups=1,
act=None,
name=None,
data_format="NCHW"):
2020-06-11 11:18:13 +00:00
x = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
param_attr=ParamAttr(
initializer=fluid.initializer.MSRA(), name=name + "_weights"),
bias_attr=False,
name=name + "_conv_op",
data_format=data_format)
x = fluid.layers.batch_norm(
input=x,
act=act,
name=name + "_bn",
param_attr=ParamAttr(
name=name + "_bn_scale",
regularizer=fluid.regularizer.L2DecayRegularizer(
regularization_coeff=0.0)),
bias_attr=ParamAttr(
name=name + "_bn_offset",
regularizer=fluid.regularizer.L2DecayRegularizer(
regularization_coeff=0.0)),
moving_mean_name=name + "_bn_mean",
moving_variance_name=name + "_bn_variance",
data_layout=data_format)
2020-06-11 17:56:27 +08:00
return x
2020-06-11 11:18:13 +00:00
def SElayer(self, input, num_channels, reduction_ratio=4, name=None):
2020-06-11 17:56:27 +08:00
pool = fluid.layers.pool2d(
input=input, pool_size=0, pool_type='avg', global_pooling=True)
stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
squeeze = fluid.layers.fc(
input=pool,
size=num_channels // reduction_ratio,
act='relu',
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv),
name=name + '_sqz_weights'),
bias_attr=ParamAttr(name=name + '_sqz_offset'))
stdv = 1.0 / math.sqrt(squeeze.shape[1] * 1.0)
excitation = fluid.layers.fc(
input=squeeze,
size=num_channels,
act=None,
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.Uniform(-stdv, stdv),
name=name + '_exc_weights'),
bias_attr=ParamAttr(name=name + '_exc_offset'))
2020-06-11 11:18:13 +00:00
excitation = fluid.layers.clip(
x=excitation, min=0, max=1, name=name + '_clip')
2020-06-11 17:56:27 +08:00
scale = fluid.layers.elementwise_mul(x=input, y=excitation, axis=0)
return scale
2020-06-11 11:18:13 +00:00
def depthwise_conv(self,
inp,
oup,
kernel_size,
stride=1,
relu=False,
name=None,
data_format="NCHW"):
return self.conv_bn_layer(
input=inp,
num_filters=oup,
filter_size=kernel_size,
stride=stride,
groups=inp.shape[1] if data_format == "NCHW" else inp.shape[-1],
act="relu" if relu else None,
name=name + "_dw",
data_format=data_format)
2020-06-11 17:56:27 +08:00
def GhostModule(self,
inp,
oup,
kernel_size=1,
ratio=2,
dw_size=3,
stride=1,
relu=True,
name=None,
data_format="NCHW"):
2020-06-11 11:18:13 +00:00
self.oup = oup
init_channels = int(math.ceil(oup / ratio))
new_channels = int(init_channels * (ratio - 1))
primary_conv = self.conv_bn_layer(
input=inp,
num_filters=init_channels,
filter_size=kernel_size,
stride=stride,
groups=1,
act="relu" if relu else None,
name=name + "_primary_conv",
data_format="NCHW")
cheap_operation = self.conv_bn_layer(
input=primary_conv,
num_filters=new_channels,
filter_size=dw_size,
stride=1,
groups=init_channels,
act="relu" if relu else None,
name=name + "_cheap_operation",
data_format=data_format)
out = fluid.layers.concat(
[primary_conv, cheap_operation], axis=1, name=name + "_concat")
2020-06-11 18:04:37 +08:00
return out
2020-06-11 11:18:13 +00:00
2020-06-11 17:56:27 +08:00
def GhostBottleneck(self,
inp,
hidden_dim,
oup,
2020-06-11 11:18:13 +00:00
kernel_size,
2020-06-11 17:56:27 +08:00
stride,
use_se,
name=None,
data_format="NCHW"):
inp_channels = inp.shape[1]
2020-06-11 11:18:13 +00:00
x = self.GhostModule(
inp=inp,
oup=hidden_dim,
kernel_size=1,
stride=1,
relu=True,
name=name + "GhostBottle_1",
data_format="NCHW")
if stride == 2:
x = self.depthwise_conv(
inp=x,
oup=hidden_dim,
kernel_size=kernel_size,
stride=stride,
relu=False,
name=name + "_dw2",
data_format="NCHW")
2020-06-11 17:56:27 +08:00
if use_se:
2020-06-11 11:18:13 +00:00
x = self.SElayer(
input=x, num_channels=hidden_dim, name=name + "SElayer")
x = self.GhostModule(
inp=x,
oup=oup,
kernel_size=1,
relu=False,
name=name + "GhostModule_2")
if stride == 1 and inp_channels == oup:
2020-06-11 17:56:27 +08:00
shortcut = inp
else:
2020-06-11 11:18:13 +00:00
shortcut = self.depthwise_conv(
inp=inp,
oup=inp_channels,
kernel_size=kernel_size,
stride=stride,
relu=False,
name=name + "shortcut_depthwise_conv",
data_format="NCHW")
shortcut = self.conv_bn_layer(
input=shortcut,
num_filters=oup,
filter_size=1,
stride=1,
groups=1,
act=None,
name=name + "shortcut_conv_bn",
data_format="NCHW")
return fluid.layers.elementwise_add(
x=x, y=shortcut, axis=-1, act=None, name=name + "elementwise_add")
def net(self, input, class_dim=1000):
# build first layer:
output_channel = int(self._make_divisible(16 * self.width_mult, 4))
x = self.conv_bn_layer(
input=input,
num_filters=output_channel,
filter_size=3,
stride=2,
groups=1,
act="relu",
name="firstlayer",
data_format="NCHW")
# build inverted residual blocks
2020-06-11 17:56:27 +08:00
idx = 0
for k, exp_size, c, use_se, s in self.cfgs:
2020-06-11 11:18:13 +00:00
output_channel = int(self._make_divisible(c * self.width_mult, 4))
hidden_channel = int(
self._make_divisible(exp_size * self.width_mult, 4))
x = self.GhostBottleneck(
inp=x,
hidden_dim=hidden_channel,
oup=output_channel,
kernel_size=k,
stride=s,
use_se=use_se,
name="GhostBottle_" + str(idx),
data_format="NCHW")
idx += 1
# build last several layers
output_channel = int(
self._make_divisible(exp_size * self.width_mult, 4))
x = self.conv_bn_layer(
input=x,
num_filters=output_channel,
filter_size=1,
stride=1,
groups=1,
act="relu",
name="lastlayer",
data_format="NCHW")
x = fluid.layers.pool2d(
input=x, pool_type='avg', global_pooling=True, data_format="NCHW")
2020-06-11 17:56:27 +08:00
output_channel = 1280
2020-06-11 11:18:13 +00:00
stdv = 1.0 / math.sqrt(x.shape[1] * 1.0)
out = fluid.layers.conv2d(
input=x,
num_filters=output_channel,
filter_size=1,
groups=1,
param_attr=ParamAttr(
name="fc_0_w",
initializer=fluid.initializer.Uniform(-stdv, stdv)),
bias_attr=False,
name="fc_0")
out = fluid.layers.batch_norm(
input=out,
act="relu",
name="fc_0_bn",
param_attr=ParamAttr(
name="fc_0_bn_scale",
regularizer=fluid.regularizer.L2DecayRegularizer(
regularization_coeff=0.0)),
bias_attr=ParamAttr(
name="fc_0_bn_offset",
regularizer=fluid.regularizer.L2DecayRegularizer(
regularization_coeff=0.0)),
moving_mean_name="fc_0_bn_mean",
moving_variance_name="fc_0_bn_variance",
data_layout="NCHW")
2020-06-11 17:56:27 +08:00
out = fluid.layers.dropout(x=out, dropout_prob=0.2)
2020-06-11 11:18:13 +00:00
stdv = 1.0 / math.sqrt(out.shape[1] * 1.0)
out = fluid.layers.fc(
input=out,
size=class_dim,
param_attr=ParamAttr(
name="fc_1_w",
initializer=fluid.initializer.Uniform(-stdv, stdv)),
bias_attr=ParamAttr(name="fc_1_bias"))
return out
2020-06-11 17:56:27 +08:00
def GhostNet_0_5():
model = GhostNet(width_mult=0.5)
return model
2020-06-11 11:18:13 +00:00
2020-06-11 17:56:27 +08:00
def GhostNet_1_0():
model = GhostNet(width_mult=1.0)
2020-06-11 11:18:13 +00:00
return model
2020-06-11 17:56:27 +08:00
def GhostNet_1_3():
model = GhostNet(width_mult=1.3)
return model