mirror of
https://github.com/PaddlePaddle/PaddleClas.git
synced 2025-06-03 21:55:06 +08:00
105 lines
3.3 KiB
Python
105 lines
3.3 KiB
Python
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import io
|
||
|
import tarfile
|
||
|
import numpy as np
|
||
|
from PIL import Image #all use default backend
|
||
|
|
||
|
import paddle
|
||
|
from paddle.io import Dataset
|
||
|
import pickle
|
||
|
import os
|
||
|
import cv2
|
||
|
import random
|
||
|
|
||
|
from feature_extractor.data import preprocess
|
||
|
from feature_extractor.data.preprocess import transform
|
||
|
from feature_extractor.utils import logger
|
||
|
|
||
|
|
||
|
def create_operators(params):
|
||
|
"""
|
||
|
create operators based on the config
|
||
|
Args:
|
||
|
params(list): a dict list, used to create some operators
|
||
|
"""
|
||
|
assert isinstance(params, list), ('operator config should be a list')
|
||
|
ops = []
|
||
|
for operator in params:
|
||
|
print(operator)
|
||
|
assert isinstance(operator,
|
||
|
dict) and len(operator) == 1, "yaml format error"
|
||
|
op_name = list(operator)[0]
|
||
|
param = {} if operator[op_name] is None else operator[op_name]
|
||
|
op = getattr(preprocess, op_name)(**param)
|
||
|
ops.append(op)
|
||
|
|
||
|
return ops
|
||
|
|
||
|
|
||
|
class ImageNetDataset(Dataset):
|
||
|
def __init__(
|
||
|
self,
|
||
|
image_root,
|
||
|
cls_label_path,
|
||
|
transform_ops=None, ):
|
||
|
self._img_root = image_root
|
||
|
self._cls_path = cls_label_path
|
||
|
if transform_ops:
|
||
|
self._transform_ops = create_operators(transform_ops)
|
||
|
self._dtype = paddle.get_default_dtype()
|
||
|
self._load_anno()
|
||
|
|
||
|
def _load_anno(self):
|
||
|
assert os.path.exists(self._cls_path)
|
||
|
assert os.path.exists(self._img_root)
|
||
|
self.images = []
|
||
|
self.labels = []
|
||
|
with open(self._cls_path) as fd:
|
||
|
lines = fd.readlines()
|
||
|
for l in lines:
|
||
|
l = l.strip().split(" ")
|
||
|
self.images.append(os.path.join(self._img_root, l[0]))
|
||
|
self.labels.append(int(l[1]))
|
||
|
assert os.path.exists(self.images[-1])
|
||
|
|
||
|
def __getitem__(self, idx):
|
||
|
try:
|
||
|
img = cv2.imread(self.images[idx])
|
||
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
||
|
if self._transform_ops:
|
||
|
img = transform(img, self._transform_ops)
|
||
|
img = img.transpose((2, 0, 1))
|
||
|
return (img, self.labels[idx], img, self.labels[idx])
|
||
|
#print(img.shape, self.labels[idx])
|
||
|
#return {'image':img, 'label':self.labels[idx]}
|
||
|
|
||
|
except Exception as ex:
|
||
|
logger.error("Exception occured when parse line: {} with msg: {}".
|
||
|
format(self.images[idx], ex))
|
||
|
rnd_idx = np.random.randint(self.__len__())
|
||
|
return self.__getitem__(rnd_idx)
|
||
|
|
||
|
def __len__(self):
|
||
|
return len(self.images)
|
||
|
|
||
|
@property
|
||
|
def class_num(self):
|
||
|
return len(set(self.labels))
|
||
|
|
||
|
|