PaddleClas/docs/zh_CN/models/HRNet.md

65 lines
5.8 KiB
Markdown
Raw Normal View History

2020-04-10 00:45:02 +08:00
# HRNet系列
## 概述
2020-04-15 20:54:45 +08:00
HRNet是2019年由微软亚洲研究院提出的一种全新的神经网络不同于以往的卷积神经网络该网络在网络深层仍然可以保持高分辨率因此预测的关键点热图更准确在空间上也更精确。此外该网络在对分辨率敏感的其他视觉任务中如检测、分割等表现尤为优异。
2020-04-13 23:54:13 +08:00
2020-05-09 19:18:17 +08:00
该系列模型的FLOPS、参数量以及T4 GPU上的预测耗时如下图所示。
2020-04-13 23:54:13 +08:00
2020-05-09 16:46:11 +08:00
![](../../images/models/T4_benchmark/t4.fp32.bs4.HRNet.flops.png)
2020-04-13 23:54:13 +08:00
2020-05-09 16:46:11 +08:00
![](../../images/models/T4_benchmark/t4.fp32.bs4.HRNet.params.png)
![](../../images/models/T4_benchmark/t4.fp32.bs4.HRNet.png)
2020-04-13 23:54:13 +08:00
2020-05-09 19:18:17 +08:00
![](../../images/models/T4_benchmark/t4.fp16.bs4.HRNet.png)
2020-04-15 20:54:45 +08:00
目前PaddleClas开源的这类模型的预训练模型一共有7个其指标如图所示其中HRNet_W48_C指标精度异常的原因可能是因为网络训练的正常波动。
2020-04-10 00:45:02 +08:00
## 精度、FLOPS和参数量
| Models | Top1 | Top5 | Reference<br>top1 | Reference<br>top5 | FLOPS<br>(G) | Parameters<br>(M) |
|:--:|:--:|:--:|:--:|:--:|:--:|:--:|
| HRNet_W18_C | 0.769 | 0.934 | 0.768 | 0.934 | 4.140 | 21.290 |
2020-10-19 13:05:34 +08:00
| HRNet_W18_C_ssld | 0.816 | 0.958 | 0.768 | 0.934 | 4.140 | 21.290 |
2020-04-10 00:45:02 +08:00
| HRNet_W30_C | 0.780 | 0.940 | 0.782 | 0.942 | 16.230 | 37.710 |
| HRNet_W32_C | 0.783 | 0.942 | 0.785 | 0.942 | 17.860 | 41.230 |
| HRNet_W40_C | 0.788 | 0.945 | 0.789 | 0.945 | 25.410 | 57.550 |
| HRNet_W44_C | 0.790 | 0.945 | 0.789 | 0.944 | 29.790 | 67.060 |
| HRNet_W48_C | 0.790 | 0.944 | 0.793 | 0.945 | 34.580 | 77.470 |
2020-10-19 13:05:34 +08:00
| HRNet_W48_C_ssld | 0.836 | 0.968 | 0.793 | 0.945 | 34.580 | 77.470 |
2020-04-10 00:45:02 +08:00
| HRNet_W64_C | 0.793 | 0.946 | 0.795 | 0.946 | 57.830 | 128.060 |
| SE_HRNet_W64_C_ssld | 0.847 | 0.973 | | | 57.830 | 128.970 |
2020-04-10 00:45:02 +08:00
2020-05-09 16:46:11 +08:00
## 基于V100 GPU的预测速度
2020-04-10 00:45:02 +08:00
2020-05-09 16:46:11 +08:00
| Models | Crop Size | Resize Short Size | FP32<br>Batch Size=1<br>(ms) |
2020-04-13 22:43:27 +08:00
|-------------|-----------|-------------------|--------------------------|
| HRNet_W18_C | 224 | 256 | 7.368 |
2020-10-19 13:05:34 +08:00
| HRNet_W18_C_ssld | 224 | 256 | 7.368 |
2020-04-13 23:49:37 +08:00
| HRNet_W30_C | 224 | 256 | 9.402 |
| HRNet_W32_C | 224 | 256 | 9.467 |
2020-04-13 22:43:27 +08:00
| HRNet_W40_C | 224 | 256 | 10.739 |
| HRNet_W44_C | 224 | 256 | 11.497 |
| HRNet_W48_C | 224 | 256 | 12.165 |
2020-10-19 13:05:34 +08:00
| HRNet_W48_C_ssld | 224 | 256 | 12.165 |
2020-04-13 22:43:27 +08:00
| HRNet_W64_C | 224 | 256 | 15.003 |
2020-05-09 16:46:11 +08:00
## 基于T4 GPU的预测速度
2020-05-09 17:01:18 +08:00
| Models | Crop Size | Resize Short Size | FP16<br>Batch Size=1<br>(ms) | FP16<br>Batch Size=4<br>(ms) | FP16<br>Batch Size=8<br>(ms) | FP32<br>Batch Size=1<br>(ms) | FP32<br>Batch Size=4<br>(ms) | FP32<br>Batch Size=8<br>(ms) |
2020-05-09 16:46:11 +08:00
|-------------|-----------|-------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|
| HRNet_W18_C | 224 | 256 | 6.79093 | 11.50986 | 17.67244 | 7.40636 | 13.29752 | 23.33445 |
2020-10-19 13:05:34 +08:00
| HRNet_W18_C_ssld | 224 | 256 | 6.79093 | 11.50986 | 17.67244 | 7.40636 | 13.29752 | 23.33445 |
2020-05-09 16:46:11 +08:00
| HRNet_W30_C | 224 | 256 | 8.98077 | 14.08082 | 21.23527 | 9.57594 | 17.35485 | 32.6933 |
| HRNet_W32_C | 224 | 256 | 8.82415 | 14.21462 | 21.19804 | 9.49807 | 17.72921 | 32.96305 |
| HRNet_W40_C | 224 | 256 | 11.4229 | 19.1595 | 30.47984 | 12.12202 | 25.68184 | 48.90623 |
| HRNet_W44_C | 224 | 256 | 12.25778 | 22.75456 | 32.61275 | 13.19858 | 32.25202 | 59.09871 |
| HRNet_W48_C | 224 | 256 | 12.65015 | 23.12886 | 33.37859 | 13.70761 | 34.43572 | 63.01219 |
2020-10-19 13:05:34 +08:00
| HRNet_W48_C_ssld | 224 | 256 | 12.65015 | 23.12886 | 33.37859 | 13.70761 | 34.43572 | 63.01219 |
2020-05-09 16:46:11 +08:00
| HRNet_W64_C | 224 | 256 | 15.10428 | 27.68901 | 40.4198 | 17.57527 | 47.9533 | 97.11228 |
| SE_HRNet_W64_C_ssld | 224 | 256 | 32.33651 | 69.31189 | 116.07245 | 31.69770 | 94.99546 | 174.45766 |