PaddleClas/ppcls/engine/engine.py

520 lines
20 KiB
Python
Raw Normal View History

2021-08-22 23:10:23 +08:00
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
2021-08-24 15:07:17 +08:00
import os
2021-08-22 23:10:23 +08:00
import paddle
import paddle.distributed as dist
from visualdl import LogWriter
2021-08-24 15:07:17 +08:00
from paddle import nn
2021-09-14 12:06:37 +08:00
import numpy as np
import random
2021-08-22 23:10:23 +08:00
from ppcls.utils.misc import AverageMeter
2021-08-22 23:10:23 +08:00
from ppcls.utils import logger
from ppcls.utils.logger import init_logger
from ppcls.utils.config import print_config
from ppcls.data import build_dataloader
2021-12-10 11:14:14 +08:00
from ppcls.arch import build_model, RecModel, DistillationModel, TheseusLayer
from ppcls.loss import build_loss
from ppcls.metric import build_metrics
from ppcls.optimizer import build_optimizer
from ppcls.utils.ema import ExponentialMovingAverage
2021-08-22 23:10:23 +08:00
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
from ppcls.utils.save_load import init_model, ModelSaver
2021-08-22 23:10:23 +08:00
from ppcls.data.utils.get_image_list import get_image_list
from ppcls.data.postprocess import build_postprocess
from ppcls.data import create_operators
from .train import build_train_epoch_func
from .evaluation import build_eval_func
from ppcls.engine.train.utils import type_name
2021-08-24 11:02:55 +08:00
from ppcls.engine import evaluation
2021-08-22 23:10:23 +08:00
from ppcls.arch.gears.identity_head import IdentityHead
2021-08-24 11:02:55 +08:00
class Engine(object):
2021-08-22 23:10:23 +08:00
def __init__(self, config, mode="train"):
2021-08-24 11:02:55 +08:00
assert mode in ["train", "eval", "infer", "export"]
2021-08-22 23:10:23 +08:00
self.mode = mode
self.config = config
self.start_eval_epoch = self.config["Global"].get("start_eval_epoch",
0) - 1
self.epochs = self.config["Global"].get("epochs", 1)
2021-09-02 15:42:22 +08:00
# set seed
self._init_seed()
2021-08-22 23:10:23 +08:00
# init logger
self.output_dir = self.config['Global']['output_dir']
log_file = os.path.join(self.output_dir, self.config["Arch"]["name"],
f"{mode}.log")
init_logger(log_file=log_file)
2021-08-22 23:10:23 +08:00
# for visualdl
self.vdl_writer = self._init_vdl()
# init train_func and eval_func
self.train_epoch_func = build_train_epoch_func(self.config)
self.eval_func = build_eval_func(self.config)
2021-08-22 23:10:23 +08:00
# set device
self._init_device()
2021-08-22 23:10:23 +08:00
# gradient accumulation
self.update_freq = self.config["Global"].get("update_freq", 1)
# build dataloader
self.use_dali = self.config["Global"].get("use_dali", False)
self.dataloader_dict = build_dataloader(self.config, mode)
# build loss
self.train_loss_func, self.unlabel_train_loss_func, self.eval_loss_func = build_loss(
self.config, self.mode)
# build metric
self.train_metric_func, self.eval_metric_func = build_metrics(self)
2021-08-22 23:10:23 +08:00
# build model
self.model = build_model(self.config, self.mode)
2021-10-18 18:07:14 +08:00
# load_pretrain
self._init_pretrained()
# build optimizer
self.optimizer, self.lr_sch = build_optimizer(self)
# AMP training and evaluating
self._init_amp()
# for distributed
2023-02-21 17:26:57 +08:00
self._init_dist()
2021-08-22 23:10:23 +08:00
# build model saver
self.model_saver = ModelSaver(
self,
net_name="model",
loss_name="train_loss_func",
opt_name="optimizer",
model_ema_name="model_ema")
print_config(config)
def train(self):
assert self.mode == "train"
print_batch_step = self.config['Global']['print_batch_step']
save_interval = self.config["Global"]["save_interval"]
best_metric = {
"metric": -1.0,
"epoch": 0,
}
# key:
# val: metrics list word
self.output_info = dict()
self.time_info = {
"batch_cost": AverageMeter(
"batch_cost", '.5f', postfix=" s,"),
"reader_cost": AverageMeter(
"reader_cost", ".5f", postfix=" s,"),
}
# build EMA model
self.model_ema = self._build_ema_model()
# TODO: mv best_metric_ema to best_metric dict
best_metric_ema = 0
self._init_checkpoints(best_metric)
# global iter counter
self.global_step = 0
for epoch_id in range(best_metric["epoch"] + 1, self.epochs + 1):
# for one epoch train
self.train_epoch_func(self, epoch_id, print_batch_step)
metric_msg = ", ".join(
[self.output_info[key].avg_info for key in self.output_info])
logger.info("[Train][Epoch {}/{}][Avg]{}".format(
epoch_id, self.epochs, metric_msg))
self.output_info.clear()
acc = 0.0
if self.config["Global"][
"eval_during_train"] and epoch_id % self.config["Global"][
"eval_interval"] == 0 and epoch_id > self.start_eval_epoch:
acc = self.eval(epoch_id)
# step lr (by epoch) according to given metric, such as acc
for i in range(len(self.lr_sch)):
if getattr(self.lr_sch[i], "by_epoch", False) and \
type_name(self.lr_sch[i]) == "ReduceOnPlateau":
self.lr_sch[i].step(acc)
if acc > best_metric["metric"]:
best_metric["metric"] = acc
best_metric["epoch"] = epoch_id
self.model_saver.save(
best_metric,
prefix="best_model",
save_student_model=True)
logger.info("[Eval][Epoch {}][best metric: {}]".format(
epoch_id, best_metric["metric"]))
logger.scaler(
name="eval_acc",
value=acc,
step=epoch_id,
writer=self.vdl_writer)
self.model.train()
if self.model_ema:
ori_model, self.model = self.model, self.model_ema.module
acc_ema = self.eval(epoch_id)
self.model = ori_model
self.model_ema.module.eval()
if acc_ema > best_metric_ema:
best_metric_ema = acc_ema
self.model_saver.save(
{
"metric": acc_ema,
"epoch": epoch_id
},
prefix="best_model_ema")
logger.info("[Eval][Epoch {}][best metric ema: {}]".format(
epoch_id, best_metric_ema))
logger.scaler(
name="eval_acc_ema",
value=acc_ema,
step=epoch_id,
writer=self.vdl_writer)
# save model
if save_interval > 0 and epoch_id % save_interval == 0:
self.model_saver.save(
{
"metric": acc,
"epoch": epoch_id
},
prefix=f"epoch_{epoch_id}")
# save the latest model
self.model_saver.save(
{
"metric": acc,
"epoch": epoch_id
}, prefix="latest")
if self.vdl_writer is not None:
self.vdl_writer.close()
@paddle.no_grad()
def eval(self, epoch_id=0):
assert self.mode in ["train", "eval"]
self.model.eval()
eval_result = self.eval_func(self, epoch_id)
self.model.train()
return eval_result
2021-08-22 23:10:23 +08:00
@paddle.no_grad()
def infer(self):
assert self.mode == "infer" and self.eval_mode == "classification"
2023-02-21 17:26:57 +08:00
self.preprocess_func = create_operators(self.config["Infer"][
"transforms"])
self.postprocess_func = build_postprocess(self.config["Infer"][
"PostProcess"])
total_trainer = dist.get_world_size()
local_rank = dist.get_rank()
2021-08-22 23:10:23 +08:00
image_list = get_image_list(self.config["Infer"]["infer_imgs"])
# data split
image_list = image_list[local_rank::total_trainer]
batch_size = self.config["Infer"]["batch_size"]
self.model.eval()
batch_data = []
image_file_list = []
for idx, image_file in enumerate(image_list):
with open(image_file, 'rb') as f:
x = f.read()
for process in self.preprocess_func:
x = process(x)
batch_data.append(x)
image_file_list.append(image_file)
if len(batch_data) >= batch_size or idx == len(image_list) - 1:
batch_tensor = paddle.to_tensor(batch_data)
if self.amp and self.amp_eval:
with paddle.amp.auto_cast(
custom_black_list={
"flatten_contiguous_range", "greater_than"
},
level=self.amp_level):
out = self.model(batch_tensor)
else:
out = self.model(batch_tensor)
2022-05-17 19:34:50 +08:00
2021-08-22 23:10:23 +08:00
if isinstance(out, list):
out = out[0]
if isinstance(out, dict) and "Student" in out:
out = out["Student"]
if isinstance(out, dict) and "logits" in out:
out = out["logits"]
if isinstance(out, dict) and "output" in out:
2021-09-15 11:35:49 +08:00
out = out["output"]
2021-08-22 23:10:23 +08:00
result = self.postprocess_func(out, image_file_list)
print(result)
batch_data.clear()
image_file_list.clear()
def export(self):
assert self.mode == "export"
2022-05-25 16:13:38 +08:00
use_multilabel = self.config["Global"].get(
"use_multilabel",
2022-08-22 14:40:26 +08:00
False) or "ATTRMetric" in self.config["Metric"]["Eval"][0]
2021-09-26 15:05:13 +08:00
model = ExportModel(self.config["Arch"], self.model, use_multilabel)
if self.config["Global"]["pretrained_model"] is not None:
if self.config["Global"]["pretrained_model"].startswith("http"):
load_dygraph_pretrain_from_url(
model.base_model,
self.config["Global"]["pretrained_model"])
else:
load_dygraph_pretrain(
model.base_model,
self.config["Global"]["pretrained_model"])
2021-08-22 23:10:23 +08:00
model.eval()
2022-05-13 23:41:08 +08:00
# for re-parameterization nets
2022-06-28 13:58:14 +08:00
for layer in self.model.sublayers():
if hasattr(layer, "re_parameterize") and not getattr(layer,
"is_repped"):
layer.re_parameterize()
2022-05-13 23:41:08 +08:00
2021-08-27 17:32:37 +08:00
save_path = os.path.join(self.config["Global"]["save_inference_dir"],
"inference")
model = paddle.jit.to_static(
model,
input_spec=[
paddle.static.InputSpec(
shape=[None] + self.config["Global"]["image_shape"],
dtype='float32')
])
if hasattr(model.base_model,
"quanter") and model.base_model.quanter is not None:
model.base_model.quanter.save_quantized_model(model,
save_path + "_int8")
2021-08-27 17:32:37 +08:00
else:
paddle.jit.save(model, save_path)
2022-05-17 17:06:14 +08:00
logger.info(
f"Export succeeded! The inference model exported has been saved in \"{self.config['Global']['save_inference_dir']}\"."
)
2021-08-22 23:10:23 +08:00
def _init_vdl(self):
if self.config['Global'][
'use_visualdl'] and mode == "train" and dist.get_rank() == 0:
vdl_writer_path = os.path.join(self.output_dir, "vdl")
if not os.path.exists(vdl_writer_path):
os.makedirs(vdl_writer_path)
return LogWriter(logdir=vdl_writer_path)
return None
2023-02-21 17:26:57 +08:00
def _init_seed(self):
seed = self.config["Global"].get("seed", False)
if dist.get_world_size() != 1:
# if self.config["Global"]["distributed"]:
# set different seed in different GPU manually in distributed environment
if not seed:
logger.warning(
"The random seed cannot be None in a distributed environment. Global.seed has been set to 42 by default"
)
self.config["Global"]["seed"] = seed = 42
logger.info(
f"Set random seed to ({int(seed)} + $PADDLE_TRAINER_ID) for different trainer"
)
dist_seed = int(seed) + dist.get_rank()
paddle.seed(dist_seed)
np.random.seed(dist_seed)
random.seed(dist_seed)
elif seed or seed == 0:
assert isinstance(seed, int), "The 'seed' must be a integer!"
paddle.seed(seed)
np.random.seed(seed)
random.seed(seed)
def _init_device(self):
device = self.config["Global"]["device"]
assert device in ["cpu", "gpu", "xpu", "npu", "mlu", "ascend"]
logger.info('train with paddle {} and device {}'.format(
paddle.__version__, device))
paddle.set_device(device)
2023-02-21 17:26:57 +08:00
def _init_pretrained(self):
if self.config["Global"]["pretrained_model"] is not None:
if self.config["Global"]["pretrained_model"].startswith("http"):
load_dygraph_pretrain_from_url(
[self.model, getattr(self, 'train_loss_func', None)],
2023-02-21 17:26:57 +08:00
self.config["Global"]["pretrained_model"])
else:
load_dygraph_pretrain(
[self.model, getattr(self, 'train_loss_func', None)],
2023-02-21 17:26:57 +08:00
self.config["Global"]["pretrained_model"])
def _init_amp(self):
self.amp = "AMP" in self.config and self.config["AMP"] is not None
self.amp_eval = False
# for amp
if self.amp:
2023-02-21 17:26:57 +08:00
AMP_RELATED_FLAGS_SETTING = {'FLAGS_max_inplace_grad_add': 8, }
if paddle.is_compiled_with_cuda():
AMP_RELATED_FLAGS_SETTING.update({
'FLAGS_cudnn_batchnorm_spatial_persistent': 1
})
paddle.set_flags(AMP_RELATED_FLAGS_SETTING)
self.scale_loss = self.config["AMP"].get("scale_loss", 1.0)
self.use_dynamic_loss_scaling = self.config["AMP"].get(
"use_dynamic_loss_scaling", False)
self.scaler = paddle.amp.GradScaler(
init_loss_scaling=self.scale_loss,
use_dynamic_loss_scaling=self.use_dynamic_loss_scaling)
self.amp_level = self.config['AMP'].get("level", "O1")
if self.amp_level not in ["O1", "O2"]:
2023-02-21 17:26:57 +08:00
msg = "[Parameter Error]: The optimize level of AMP only support 'O1' and 'O2'. The level has been set 'O1'."
logger.warning(msg)
self.config['AMP']["level"] = "O1"
self.amp_level = "O1"
2023-02-21 17:26:57 +08:00
self.amp_eval = self.config["AMP"].get("use_fp16_test", False)
2023-02-21 17:26:57 +08:00
# TODO(gaotingquan): Paddle not yet support FP32 evaluation when training with AMPO2
if self.mode == "train" and self.config["Global"].get(
"eval_during_train",
True) and self.amp_level == "O2" and self.amp_eval == False:
2023-02-21 17:26:57 +08:00
msg = "PaddlePaddle only support FP16 evaluation when training with AMP O2 now. "
logger.warning(msg)
self.config["AMP"]["use_fp16_test"] = True
self.amp_eval = True
paddle_version = paddle.__version__[:3]
# paddle version < 2.3.0 and not develop
if paddle_version not in ["2.3", "2.4", "0.0"]:
msg = "When using AMP, PaddleClas release/2.6 and later version only support PaddlePaddle version >= 2.3.0."
logger.error(msg)
raise Exception(msg)
if self.mode == "train" or self.amp_eval:
self.model = paddle.amp.decorate(
models=self.model,
level=self.amp_level,
save_dtype='float32')
if self.mode == "train" and len(self.train_loss_func.parameters(
)) > 0:
self.train_loss_func = paddle.amp.decorate(
models=self.train_loss_func,
level=self.amp_level,
save_dtype='float32')
2023-02-21 17:26:57 +08:00
self.amp_level = engine.config["AMP"].get("level", "O1").upper()
2023-02-23 19:53:55 +08:00
2023-02-21 17:26:57 +08:00
def _init_dist(self):
# check the gpu num
world_size = dist.get_world_size()
self.config["Global"]["distributed"] = world_size != 1
# TODO(gaotingquan):
if self.mode == "train":
std_gpu_num = 8 if isinstance(
self.config["Optimizer"],
dict) and self.config["Optimizer"]["name"] == "AdamW" else 4
if world_size != std_gpu_num:
msg = f"The training strategy provided by PaddleClas is based on {std_gpu_num} gpus. But the number of gpu is {world_size} in current training. Please modify the stategy (learning rate, batch size and so on) if use this config to train."
logger.warning(msg)
if self.config["Global"]["distributed"]:
dist.init_parallel_env()
self.model = paddle.DataParallel(self.model)
if self.mode == 'train' and len(self.train_loss_func.parameters(
2023-02-21 17:26:57 +08:00
)) > 0:
self.train_loss_func = paddle.DataParallel(
self.train_loss_func)
2023-02-21 17:26:57 +08:00
def _build_ema_model(self):
if "EMA" in self.config and self.mode == "train":
model_ema = ExponentialMovingAverage(
self.model, self.config['EMA'].get("decay", 0.9999))
return model_ema
else:
return None
def _init_checkpoints(self, best_metric):
if self.config["Global"].get("checkpoints", None) is not None:
metric_info = init_model(self.config.Global, self.model,
self.optimizer, self.train_loss_func,
self.model_ema)
if metric_info is not None:
best_metric.update(metric_info)
2021-08-22 23:10:23 +08:00
2021-12-10 11:14:14 +08:00
class ExportModel(TheseusLayer):
2021-08-22 23:10:23 +08:00
"""
ExportModel: add softmax onto the model
"""
2021-09-26 15:05:13 +08:00
def __init__(self, config, model, use_multilabel):
2021-08-22 23:10:23 +08:00
super().__init__()
self.base_model = model
# we should choose a final model to export
if isinstance(self.base_model, DistillationModel):
self.infer_model_name = config["infer_model_name"]
else:
self.infer_model_name = None
self.infer_output_key = config.get("infer_output_key", None)
if self.infer_output_key == "features" and isinstance(self.base_model,
RecModel):
self.base_model.head = IdentityHead()
2021-09-26 15:05:13 +08:00
if use_multilabel:
self.out_act = nn.Sigmoid()
2021-08-22 23:10:23 +08:00
else:
2021-09-26 15:05:13 +08:00
if config.get("infer_add_softmax", True):
self.out_act = nn.Softmax(axis=-1)
else:
self.out_act = None
2021-08-22 23:10:23 +08:00
def eval(self):
self.training = False
for layer in self.sublayers():
layer.training = False
layer.eval()
def forward(self, x):
x = self.base_model(x)
if isinstance(x, list):
x = x[0]
if self.infer_model_name is not None:
x = x[self.infer_model_name]
if self.infer_output_key is not None:
x = x[self.infer_output_key]
2021-09-26 15:05:13 +08:00
if self.out_act is not None:
2022-02-28 19:11:50 +08:00
if isinstance(x, dict):
x = x["logits"]
2021-09-26 15:05:13 +08:00
x = self.out_act(x)
2021-08-22 23:10:23 +08:00
return x