2020-04-09 02:16:30 +08:00
|
|
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import argparse
|
|
|
|
|
|
|
|
from ppcls.modeling import architectures
|
2020-09-22 16:49:12 +08:00
|
|
|
from ppcls.utils.save_load import load_dygraph_pretrain
|
|
|
|
import paddle
|
|
|
|
import paddle.nn.functional as F
|
|
|
|
from paddle.jit import to_static
|
2020-04-09 02:16:30 +08:00
|
|
|
|
|
|
|
|
|
|
|
def parse_args():
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument("-m", "--model", type=str)
|
|
|
|
parser.add_argument("-p", "--pretrained_model", type=str)
|
|
|
|
parser.add_argument("-o", "--output_path", type=str)
|
2020-04-22 13:55:28 +08:00
|
|
|
parser.add_argument("--class_dim", type=int, default=1000)
|
2020-09-22 16:49:12 +08:00
|
|
|
# parser.add_argument("--img_size", type=int, default=224)
|
2020-04-09 02:16:30 +08:00
|
|
|
|
|
|
|
return parser.parse_args()
|
|
|
|
|
|
|
|
|
2020-09-22 16:49:12 +08:00
|
|
|
class Net(paddle.nn.Layer):
|
|
|
|
def __init__(self, net, to_static, class_dim):
|
|
|
|
super(Net, self).__init__()
|
|
|
|
self.pre_net = net(class_dim=class_dim)
|
|
|
|
self.to_static = to_static
|
2020-04-09 02:16:30 +08:00
|
|
|
|
2020-09-23 22:51:52 +08:00
|
|
|
# Please modify the 'shape' according to actual needs
|
2020-09-22 16:49:12 +08:00
|
|
|
@to_static(input_spec=[
|
|
|
|
paddle.static.InputSpec(
|
|
|
|
shape=[None, 3, 224, 224], dtype='float32')
|
|
|
|
])
|
|
|
|
def forward(self, inputs):
|
|
|
|
x = self.pre_net(inputs)
|
|
|
|
x = F.softmax(x)
|
|
|
|
return x
|
2020-04-09 02:16:30 +08:00
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
args = parse_args()
|
|
|
|
|
2020-09-22 16:49:12 +08:00
|
|
|
paddle.disable_static()
|
|
|
|
net = architectures.__dict__[args.model]
|
2020-04-09 02:16:30 +08:00
|
|
|
|
2020-09-22 16:49:12 +08:00
|
|
|
model = Net(net, to_static, args.class_dim)
|
2020-09-23 22:51:52 +08:00
|
|
|
|
|
|
|
# Please set 'load_static_weights' to 'True' or 'False' according to the 'pretrained_model'
|
|
|
|
load_dygraph_pretrain(
|
|
|
|
model, path=args.pretrained_model, load_static_weights=True)
|
2020-09-22 16:49:12 +08:00
|
|
|
paddle.jit.save(model, args.output_path)
|
2020-04-09 02:16:30 +08:00
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
main()
|