2021-11-26 19:28:16 +08:00
# MixNet 系列
2022-06-10 16:28:36 +08:00
-----
2021-11-25 15:40:40 +08:00
## 目录
2021-04-15 14:05:46 +08:00
2022-06-10 16:28:36 +08:00
- [1. 模型介绍 ](#1 )
- [1.1 模型简介 ](#1.1 )
- [1.2 模型指标 ](#1.2 )
- [1.3 Benchmark ](#1.3 )
- [1.3.1 基于 V100 GPU 的预测速度 ](#1.3.1 )
- [2. 模型快速体验 ](#2 )
- [3. 模型训练、评估和预测 ](#3 )
- [4. 模型推理部署 ](#4 )
- [4.1 推理模型准备 ](#4.1 )
- [4.2 基于 Python 预测引擎推理 ](#4.2 )
- [4.3 基于 C++ 预测引擎推理 ](#4.3 )
- [4.4 服务化部署 ](#4.4 )
- [4.5 端侧部署 ](#4.5 )
- [4.6 Paddle2ONNX 模型转换与预测 ](#4.6 )
2021-11-25 15:40:40 +08:00
< a name = '1' > < / a >
2022-06-10 16:28:36 +08:00
## 1. 模型介绍
< a name = '1.1' > < / a >
### 1.1 模型简介
2021-04-15 14:05:46 +08:00
2021-11-26 19:28:16 +08:00
MixNet 是谷歌出的一篇关于轻量级网络的文章,主要工作就在于探索不同大小的卷积核的组合。作者发现目前网络有以下两个问题:
2021-04-15 14:05:46 +08:00
- 小的卷积核感受野小,参数少,但是准确率不高
- 大的卷积核感受野大,准确率相对略高,但是参数也相对增加了很多
2021-11-26 19:28:16 +08:00
为了解决上面两个问题,文中提出一种新的混合深度分离卷积(MDConv)(mixed depthwise convolution),将不同的核大小混合在一个卷积运算中,并且基于 AutoML 的搜索空间,提出了一系列的网络叫做 MixNets, 在 ImageNet 上取得了较好的效果。[论文地址](https://arxiv.org/pdf/1907.09595.pdf)
2021-04-15 14:05:46 +08:00
2022-06-10 16:28:36 +08:00
< a name = '1.2' > < / a >
2021-04-15 14:05:46 +08:00
2022-06-10 16:28:36 +08:00
### 1.2 模型指标
2021-04-15 14:05:46 +08:00
2022-06-19 18:29:45 +08:00
| Models | Top1 | Top5 | Reference< br > top1| Reference< br > top5 | FLOPs< br > (M) | Params< br / > (M) |
2021-04-15 14:05:46 +08:00
|:--:|:--:|:--:|:--:|:--:|----|
2022-06-10 17:04:32 +08:00
| MixNet_S | 76.28 | 92.99 | 75.8 | - | 252.977 | 4.167 |
| MixNet_M | 77.67 | 93.64 | 77.0 | - | 357.119 | 5.065 |
| MixNet_L | 78.60 | 94.37 | 78.9 | - | 579.017 | 7.384 |
2021-04-15 14:05:46 +08:00
2022-06-19 23:53:58 +08:00
**备注:** PaddleClas 所提供的该系列模型的预训练模型权重,均是基于其官方提供的权重转得。
2022-06-10 16:28:36 +08:00
### 1.3 Benchmark
2021-12-13 20:42:03 +08:00
2022-06-10 16:28:36 +08:00
< a name = '1.3.1' > < / a >
#### 1.3.1 基于 V100 GPU 的预测速度
2021-12-13 20:42:03 +08:00
2022-06-19 18:29:45 +08:00
| Models | Size | Latency(ms)< br > bs=1 | Latency(ms)< br > bs=4 | Latency(ms)< br > bs=8 |
| -------- | ----------------- | ------------------------------ | ------------------------------ | ------------------------------ |
| MixNet_S | 224 | 2.31 | 3.63 | 5.20 |
| MixNet_M | 224 | 2.84 | 4.60 | 6.62 |
| MixNet_L | 224 | 3.16 | 5.55 | 8.03 |
2021-12-13 20:42:03 +08:00
2022-06-19 18:29:45 +08:00
**备注:** 精度类型为 FP32, 推理过程使用 TensorRT。
2022-06-10 16:28:36 +08:00
< a name = "2" > < / a >
## 2. 模型快速体验
安装 paddlepaddle 和 paddleclas 即可快速对图片进行预测,体验方法可以参考[ResNet50 模型快速体验](./ResNet.md#2-模型快速体验)。
< a name = "3" > < / a >
## 3. 模型训练、评估和预测
2022-06-10 18:08:06 +08:00
此部分内容包括训练环境配置、ImageNet数据的准备、该模型在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/MixNet/` 中提供了该模型的训练配置,启动训练方法可以参考:[ResNet50 模型训练、评估和预测](./ResNet.md#3-模型训练评估和预测)。
2022-06-10 16:28:36 +08:00
< a name = "4" > < / a >
## 4. 模型推理部署
< a name = "4.1" > < / a >
### 4.1 推理模型准备
Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端, 提供高性能的推理能力。相比于直接基于预训练模型进行预测, Paddle Inference可使用 MKLDNN、CUDNN、TensorRT 进行预测加速, 从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍, 可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)。
Inference 的获取可以参考 [ResNet50 推理模型准备 ](./ResNet.md#41-推理模型准备 ) 。
< a name = "4.2" > < / a >
### 4.2 基于 Python 预测引擎推理
2022-06-10 18:08:06 +08:00
PaddleClas 提供了基于 python 预测引擎推理的示例。您可以参考[ResNet50 基于 Python 预测引擎推理](./ResNet.md#42-基于-python-预测引擎推理) 。
2022-06-10 16:28:36 +08:00
< a name = "4.3" > < / a >
### 4.3 基于 C++ 预测引擎推理
2022-10-24 14:37:02 +08:00
PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../../deployment/image_classification/cpp/linux.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../../deployment/image_classification/cpp/windows.md)完成相应的预测库编译和模型预测工作。
2022-06-10 16:28:36 +08:00
< a name = "4.4" > < / a >
### 4.4 服务化部署
Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议, 提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)。
2022-10-24 14:37:02 +08:00
PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../../deployment/image_classification/paddle_serving.md)来完成相应的部署工作。
2022-06-10 16:28:36 +08:00
< a name = "4.5" > < / a >
### 4.5 端侧部署
Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)。
2022-10-24 14:37:02 +08:00
PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../../deployment/image_classification/paddle_lite.md)来完成相应的部署工作。
2022-06-10 16:28:36 +08:00
< a name = "4.6" > < / a >
### 4.6 Paddle2ONNX 模型转换与预测
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署, 包括TensorRT/OpenVINO/MNN/TNN/NCNN, 以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)。
2022-10-24 14:37:02 +08:00
PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](../../deployment/image_classification/paddle2onnx.md)来完成相应的部署工作。