commit
032230c66c
|
@ -24,9 +24,11 @@ from .se_resnext_vd import SE_ResNeXt50_vd_32x4d, SE_ResNeXt50_vd_32x4d, SENet15
|
|||
from .dpn import DPN68
|
||||
from .densenet import DenseNet121
|
||||
from .hrnet import HRNet_W18_C
|
||||
from .efficientnet import EfficientNetB0
|
||||
from .googlenet import GoogLeNet
|
||||
from .mobilenet_v1 import MobileNetV1_x0_25, MobileNetV1_x0_5, MobileNetV1_x0_75, MobileNetV1
|
||||
from .mobilenet_v2 import MobileNetV2_x0_25, MobileNetV2_x0_5, MobileNetV2_x0_75, MobileNetV2, MobileNetV2_x1_5, MobileNetV2_x2_0
|
||||
from .mobilenet_v3 import MobileNetV3_small_x0_35, MobileNetV3_small_x0_5, MobileNetV3_small_x0_75, MobileNetV3_small_x1_0, MobileNetV3_small_x1_25, MobileNetV3_large_x0_35, MobileNetV3_large_x0_5, MobileNetV3_large_x0_75, MobileNetV3_large_x1_0, MobileNetV3_large_x1_25
|
||||
from .shufflenet_v2 import ShuffleNetV2_x0_25, ShuffleNetV2_x0_33, ShuffleNetV2_x0_5, ShuffleNetV2, ShuffleNetV2_x1_5, ShuffleNetV2_x2_0, ShuffleNetV2_swish
|
||||
|
||||
from .distillation_models import ResNet50_vd_distill_MobileNetV3_large_x1_0
|
||||
from .distillation_models import ResNet50_vd_distill_MobileNetV3_large_x1_0
|
||||
|
|
|
@ -20,7 +20,6 @@ import numpy as np
|
|||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid.param_attr import ParamAttr
|
||||
from paddle.fluid.layer_helper import LayerHelper
|
||||
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
|
||||
|
||||
import math
|
||||
|
|
|
@ -21,7 +21,6 @@ import sys
|
|||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid.param_attr import ParamAttr
|
||||
from paddle.fluid.layer_helper import LayerHelper
|
||||
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
|
||||
|
||||
import math
|
||||
|
|
|
@ -1,7 +1,6 @@
|
|||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid.param_attr import ParamAttr
|
||||
from paddle.fluid.layer_helper import LayerHelper
|
||||
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
|
||||
import math
|
||||
import collections
|
||||
|
@ -491,6 +490,7 @@ class SEBlock(fluid.dygraph.Layer):
|
|||
num_squeezed_channels,
|
||||
oup,
|
||||
1,
|
||||
act="sigmoid",
|
||||
use_bias=True,
|
||||
padding_type=padding_type,
|
||||
name=name + "_se_expand")
|
||||
|
@ -499,8 +499,6 @@ class SEBlock(fluid.dygraph.Layer):
|
|||
x = self._pool(inputs)
|
||||
x = self._conv1(x)
|
||||
x = self._conv2(x)
|
||||
layer_helper = LayerHelper(self.full_name(), act='sigmoid')
|
||||
x = layer_helper.append_activation(x)
|
||||
return fluid.layers.elementwise_mul(inputs, x)
|
||||
|
||||
|
||||
|
@ -565,18 +563,17 @@ class MbConvBlock(fluid.dygraph.Layer):
|
|||
|
||||
def forward(self, inputs):
|
||||
x = inputs
|
||||
layer_helper = LayerHelper(self.full_name(), act='swish')
|
||||
if self.expand_ratio != 1:
|
||||
x = self._ecn(x)
|
||||
x = layer_helper.append_activation(x)
|
||||
x = fluid.layers.swish(x)
|
||||
x = self._dcn(x)
|
||||
x = layer_helper.append_activation(x)
|
||||
x = fluid.layers.swish(x)
|
||||
if self.has_se:
|
||||
x = self._se(x)
|
||||
x = self._pcn(x)
|
||||
if self.id_skip and \
|
||||
self.block_args.stride == 1 and \
|
||||
self.block_args.input_filters == self.block_args.output_filters:
|
||||
self.block_args.stride == 1 and \
|
||||
self.block_args.input_filters == self.block_args.output_filters:
|
||||
if self.drop_connect_rate:
|
||||
x = _drop_connect(x, self.drop_connect_rate, self.is_test)
|
||||
x = fluid.layers.elementwise_add(x, inputs)
|
||||
|
@ -697,8 +694,7 @@ class ExtractFeatures(fluid.dygraph.Layer):
|
|||
|
||||
def forward(self, inputs):
|
||||
x = self._conv_stem(inputs)
|
||||
layer_helper = LayerHelper(self.full_name(), act='swish')
|
||||
x = layer_helper.append_activation(x)
|
||||
x = fluid.layers.swish(x)
|
||||
for _mc_block in self.conv_seq:
|
||||
x = _mc_block(x)
|
||||
return x
|
||||
|
@ -914,4 +910,4 @@ def EfficientNetB7(is_test=False,
|
|||
override_params=override_params,
|
||||
use_se=use_se,
|
||||
**args)
|
||||
return model
|
||||
return model
|
||||
|
|
|
@ -1,18 +1,17 @@
|
|||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid.param_attr import ParamAttr
|
||||
from paddle.fluid.layer_helper import LayerHelper
|
||||
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
|
||||
import math
|
||||
|
||||
__all__ = ['GoogLeNet_DY']
|
||||
__all__ = ['GoogLeNet']
|
||||
|
||||
|
||||
def xavier(channels, filter_size, name):
|
||||
stdv = (3.0 / (filter_size**2 * channels))**0.5
|
||||
param_attr = ParamAttr(
|
||||
initializer=fluid.initializer.Uniform(-stdv, stdv),
|
||||
name=name + "_weights")
|
||||
|
||||
return param_attr
|
||||
|
||||
|
||||
|
@ -90,8 +89,8 @@ class Inception(fluid.dygraph.Layer):
|
|||
convprj = self._convprj(pool)
|
||||
|
||||
cat = fluid.layers.concat([conv1, conv3, conv5, convprj], axis=1)
|
||||
layer_helper = LayerHelper(self.full_name(), act="relu")
|
||||
return layer_helper.append_activation(cat)
|
||||
cat = fluid.layers.relu(cat)
|
||||
return cat
|
||||
|
||||
|
||||
class GoogleNetDY(fluid.dygraph.Layer):
|
||||
|
@ -205,4 +204,4 @@ class GoogleNetDY(fluid.dygraph.Layer):
|
|||
|
||||
def GoogLeNet(**args):
|
||||
model = GoogleNetDY(**args)
|
||||
return model
|
||||
return model
|
||||
|
|
|
@ -20,7 +20,6 @@ import numpy as np
|
|||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid.param_attr import ParamAttr
|
||||
from paddle.fluid.layer_helper import LayerHelper
|
||||
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
|
||||
|
||||
import math
|
||||
|
@ -495,8 +494,7 @@ class FuseLayers(fluid.dygraph.Layer):
|
|||
residual = fluid.layers.elementwise_add(
|
||||
x=residual, y=y, act=None)
|
||||
|
||||
layer_helper = LayerHelper(self.full_name(), act='relu')
|
||||
residual = layer_helper.append_activation(residual)
|
||||
residual = fluid.layers.relu(residual)
|
||||
outs.append(residual)
|
||||
|
||||
return outs
|
||||
|
|
|
@ -20,7 +20,6 @@ import numpy as np
|
|||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid.param_attr import ParamAttr
|
||||
from paddle.fluid.layer_helper import LayerHelper
|
||||
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
|
||||
from paddle.fluid.initializer import MSRA
|
||||
import math
|
||||
|
|
|
@ -20,7 +20,6 @@ import numpy as np
|
|||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid.param_attr import ParamAttr
|
||||
from paddle.fluid.layer_helper import LayerHelper
|
||||
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
|
||||
|
||||
import math
|
||||
|
|
|
@ -20,7 +20,6 @@ import numpy as np
|
|||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid.param_attr import ParamAttr
|
||||
from paddle.fluid.layer_helper import LayerHelper
|
||||
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
|
||||
|
||||
import math
|
||||
|
|
|
@ -20,7 +20,6 @@ import numpy as np
|
|||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid.param_attr import ParamAttr
|
||||
from paddle.fluid.layer_helper import LayerHelper
|
||||
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
|
||||
|
||||
import math
|
||||
|
@ -143,9 +142,8 @@ class BottleneckBlock(fluid.dygraph.Layer):
|
|||
short = inputs
|
||||
else:
|
||||
short = self.short(inputs)
|
||||
y = fluid.layers.elementwise_add(x=short, y=conv2)
|
||||
layer_helper = LayerHelper(self.full_name(), act='relu')
|
||||
return layer_helper.append_activation(y)
|
||||
y = fluid.layers.elementwise_add(x=short, y=conv2, act='relu')
|
||||
return y
|
||||
|
||||
|
||||
class Res2Net(fluid.dygraph.Layer):
|
||||
|
|
|
@ -20,7 +20,6 @@ import numpy as np
|
|||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid.param_attr import ParamAttr
|
||||
from paddle.fluid.layer_helper import LayerHelper
|
||||
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
|
||||
|
||||
import math
|
||||
|
@ -47,7 +46,11 @@ class ConvBNLayer(fluid.dygraph.Layer):
|
|||
|
||||
self.is_vd_mode = is_vd_mode
|
||||
self._pool2d_avg = Pool2D(
|
||||
pool_size=2, pool_stride=2, pool_padding=0, pool_type='avg', ceil_mode=True)
|
||||
pool_size=2,
|
||||
pool_stride=2,
|
||||
pool_padding=0,
|
||||
pool_type='avg',
|
||||
ceil_mode=True)
|
||||
self._conv = Conv2D(
|
||||
num_channels=num_channels,
|
||||
num_filters=num_filters,
|
||||
|
@ -150,9 +153,8 @@ class BottleneckBlock(fluid.dygraph.Layer):
|
|||
short = inputs
|
||||
else:
|
||||
short = self.short(inputs)
|
||||
y = fluid.layers.elementwise_add(x=short, y=conv2)
|
||||
layer_helper = LayerHelper(self.full_name(), act='relu')
|
||||
return layer_helper.append_activation(y)
|
||||
y = fluid.layers.elementwise_add(x=short, y=conv2, act='relu')
|
||||
return y
|
||||
|
||||
|
||||
class Res2Net_vd(fluid.dygraph.Layer):
|
||||
|
|
|
@ -20,7 +20,6 @@ import numpy as np
|
|||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid.param_attr import ParamAttr
|
||||
from paddle.fluid.layer_helper import LayerHelper
|
||||
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
|
||||
|
||||
import math
|
||||
|
@ -118,10 +117,8 @@ class BottleneckBlock(fluid.dygraph.Layer):
|
|||
else:
|
||||
short = self.short(inputs)
|
||||
|
||||
y = fluid.layers.elementwise_add(x=short, y=conv2)
|
||||
|
||||
layer_helper = LayerHelper(self.full_name(), act="relu")
|
||||
return layer_helper.append_activation(y)
|
||||
y = fluid.layers.elementwise_add(x=short, y=conv2, act="relu")
|
||||
return y
|
||||
|
||||
|
||||
class BasicBlock(fluid.dygraph.Layer):
|
||||
|
@ -165,10 +162,8 @@ class BasicBlock(fluid.dygraph.Layer):
|
|||
short = inputs
|
||||
else:
|
||||
short = self.short(inputs)
|
||||
y = fluid.layers.elementwise_add(x=short, y=conv1)
|
||||
|
||||
layer_helper = LayerHelper(self.full_name(), act="relu")
|
||||
return layer_helper.append_activation(y)
|
||||
y = fluid.layers.elementwise_add(x=short, y=conv1, act="relu")
|
||||
return y
|
||||
|
||||
|
||||
class ResNet(fluid.dygraph.Layer):
|
||||
|
|
|
@ -1,213 +0,0 @@
|
|||
import numpy as np
|
||||
import argparse
|
||||
import ast
|
||||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid.param_attr import ParamAttr
|
||||
from paddle.fluid.layer_helper import LayerHelper
|
||||
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
|
||||
from paddle.fluid.dygraph.base import to_variable
|
||||
|
||||
from paddle.fluid import framework
|
||||
|
||||
import math
|
||||
import sys
|
||||
import time
|
||||
|
||||
class ConvBNLayer(fluid.dygraph.Layer):
|
||||
def __init__(self,
|
||||
num_channels,
|
||||
num_filters,
|
||||
filter_size,
|
||||
stride=1,
|
||||
groups=1,
|
||||
act=None,
|
||||
name=None):
|
||||
super(ConvBNLayer, self).__init__()
|
||||
|
||||
self._conv = Conv2D(
|
||||
num_channels=num_channels,
|
||||
num_filters=num_filters,
|
||||
filter_size=filter_size,
|
||||
stride=stride,
|
||||
padding=(filter_size - 1) // 2,
|
||||
groups=groups,
|
||||
act=None,
|
||||
param_attr=ParamAttr(name=name + "_weights"),
|
||||
bias_attr=False)
|
||||
if name == "conv1":
|
||||
bn_name = "bn_" + name
|
||||
else:
|
||||
bn_name = "bn" + name[3:]
|
||||
self._batch_norm = BatchNorm(num_filters,
|
||||
act=act,
|
||||
param_attr=ParamAttr(name=bn_name + '_scale'),
|
||||
bias_attr=ParamAttr(bn_name + '_offset'),
|
||||
moving_mean_name=bn_name + '_mean',
|
||||
moving_variance_name=bn_name + '_variance')
|
||||
|
||||
def forward(self, inputs):
|
||||
y = self._conv(inputs)
|
||||
y = self._batch_norm(y)
|
||||
return y
|
||||
|
||||
|
||||
class BottleneckBlock(fluid.dygraph.Layer):
|
||||
def __init__(self,
|
||||
num_channels,
|
||||
num_filters,
|
||||
stride,
|
||||
shortcut=True,
|
||||
name=None):
|
||||
super(BottleneckBlock, self).__init__()
|
||||
|
||||
self.conv0 = ConvBNLayer(
|
||||
num_channels=num_channels,
|
||||
num_filters=num_filters,
|
||||
filter_size=1,
|
||||
act='relu',
|
||||
name=name+"_branch2a")
|
||||
self.conv1 = ConvBNLayer(
|
||||
num_channels=num_filters,
|
||||
num_filters=num_filters,
|
||||
filter_size=3,
|
||||
stride=stride,
|
||||
act='relu',
|
||||
name=name+"_branch2b")
|
||||
self.conv2 = ConvBNLayer(
|
||||
num_channels=num_filters,
|
||||
num_filters=num_filters * 4,
|
||||
filter_size=1,
|
||||
act=None,
|
||||
name=name+"_branch2c")
|
||||
|
||||
if not shortcut:
|
||||
self.short = ConvBNLayer(
|
||||
num_channels=num_channels,
|
||||
num_filters=num_filters * 4,
|
||||
filter_size=1,
|
||||
stride=stride,
|
||||
name=name + "_branch1")
|
||||
|
||||
self.shortcut = shortcut
|
||||
|
||||
self._num_channels_out = num_filters * 4
|
||||
|
||||
def forward(self, inputs):
|
||||
y = self.conv0(inputs)
|
||||
conv1 = self.conv1(y)
|
||||
conv2 = self.conv2(conv1)
|
||||
|
||||
if self.shortcut:
|
||||
short = inputs
|
||||
else:
|
||||
short = self.short(inputs)
|
||||
|
||||
y = fluid.layers.elementwise_add(x=short, y=conv2)
|
||||
|
||||
layer_helper = LayerHelper(self.full_name(), act='relu')
|
||||
return layer_helper.append_activation(y)
|
||||
|
||||
|
||||
class ResNet(fluid.dygraph.Layer):
|
||||
def __init__(self, layers=50, class_dim=1000):
|
||||
super(ResNet, self).__init__()
|
||||
|
||||
self.layers = layers
|
||||
supported_layers = [50, 101, 152]
|
||||
assert layers in supported_layers, \
|
||||
"supported layers are {} but input layer is {}".format(supported_layers, layers)
|
||||
|
||||
if layers == 50:
|
||||
depth = [3, 4, 6, 3]
|
||||
elif layers == 101:
|
||||
depth = [3, 4, 23, 3]
|
||||
elif layers == 152:
|
||||
depth = [3, 8, 36, 3]
|
||||
num_channels = [64, 256, 512, 1024]
|
||||
num_filters = [64, 128, 256, 512]
|
||||
|
||||
self.conv = ConvBNLayer(
|
||||
num_channels=3,
|
||||
num_filters=64,
|
||||
filter_size=7,
|
||||
stride=2,
|
||||
act='relu',
|
||||
name="conv1")
|
||||
self.pool2d_max = Pool2D(
|
||||
pool_size=3,
|
||||
pool_stride=2,
|
||||
pool_padding=1,
|
||||
pool_type='max')
|
||||
|
||||
self.bottleneck_block_list = []
|
||||
for block in range(len(depth)):
|
||||
shortcut = False
|
||||
for i in range(depth[block]):
|
||||
if layers in [101, 152] and block == 2:
|
||||
if i == 0:
|
||||
conv_name="res"+str(block+2)+"a"
|
||||
else:
|
||||
conv_name="res"+str(block+2)+"b"+str(i)
|
||||
else:
|
||||
conv_name="res"+str(block+2)+chr(97+i)
|
||||
bottleneck_block = self.add_sublayer(
|
||||
'bb_%d_%d' % (block, i),
|
||||
BottleneckBlock(
|
||||
num_channels=num_channels[block]
|
||||
if i == 0 else num_filters[block] * 4,
|
||||
num_filters=num_filters[block],
|
||||
stride=2 if i == 0 and block != 0 else 1,
|
||||
shortcut=shortcut,
|
||||
name=conv_name))
|
||||
self.bottleneck_block_list.append(bottleneck_block)
|
||||
shortcut = True
|
||||
|
||||
self.pool2d_avg = Pool2D(
|
||||
pool_size=7, pool_type='avg', global_pooling=True)
|
||||
|
||||
self.pool2d_avg_output = num_filters[len(num_filters) - 1] * 4 * 1 * 1
|
||||
|
||||
stdv = 1.0 / math.sqrt(2048 * 1.0)
|
||||
|
||||
self.out = Linear(self.pool2d_avg_output,
|
||||
class_dim,
|
||||
param_attr=ParamAttr(
|
||||
initializer=fluid.initializer.Uniform(-stdv, stdv), name="fc_0.w_0"),
|
||||
bias_attr=ParamAttr(name="fc_0.b_0"))
|
||||
|
||||
def forward(self, inputs):
|
||||
y = self.conv(inputs)
|
||||
y = self.pool2d_max(y)
|
||||
for bottleneck_block in self.bottleneck_block_list:
|
||||
y = bottleneck_block(y)
|
||||
y = self.pool2d_avg(y)
|
||||
y = fluid.layers.reshape(y, shape=[-1, self.pool2d_avg_output])
|
||||
y = self.out(y)
|
||||
return y
|
||||
|
||||
|
||||
def ResNet50(**args):
|
||||
model = ResNet(layers=50, **args)
|
||||
return model
|
||||
|
||||
|
||||
def ResNet101(**args):
|
||||
model = ResNet(layers=101, **args)
|
||||
return model
|
||||
|
||||
|
||||
def ResNet152(**args):
|
||||
model = ResNet(layers=152, **args)
|
||||
return model
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import numpy as np
|
||||
place = fluid.CPUPlace()
|
||||
with fluid.dygraph.guard(place):
|
||||
model = ResNet50()
|
||||
img = np.random.uniform(0, 255, [1, 3, 224, 224]).astype('float32')
|
||||
img = fluid.dygraph.to_variable(img)
|
||||
res = model(img)
|
||||
print(res.shape)
|
|
@ -20,7 +20,6 @@ import numpy as np
|
|||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid.param_attr import ParamAttr
|
||||
from paddle.fluid.layer_helper import LayerHelper
|
||||
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
|
||||
|
||||
import math
|
||||
|
@ -120,10 +119,8 @@ class BottleneckBlock(fluid.dygraph.Layer):
|
|||
else:
|
||||
short = self.short(inputs)
|
||||
|
||||
y = fluid.layers.elementwise_add(x=short, y=conv2)
|
||||
|
||||
layer_helper = LayerHelper(self.full_name(), act='relu')
|
||||
return layer_helper.append_activation(y)
|
||||
y = fluid.layers.elementwise_add(x=short, y=conv2, act='relu')
|
||||
return y
|
||||
|
||||
|
||||
class BasicBlock(fluid.dygraph.Layer):
|
||||
|
@ -167,10 +164,8 @@ class BasicBlock(fluid.dygraph.Layer):
|
|||
short = inputs
|
||||
else:
|
||||
short = self.short(inputs)
|
||||
y = fluid.layers.elementwise_add(x=short, y=conv1)
|
||||
|
||||
layer_helper = LayerHelper(self.full_name(), act='relu')
|
||||
return layer_helper.append_activation(y)
|
||||
y = fluid.layers.elementwise_add(x=short, y=conv1, act='relu')
|
||||
return y
|
||||
|
||||
|
||||
class ResNet_vc(fluid.dygraph.Layer):
|
||||
|
|
|
@ -20,7 +20,6 @@ import numpy as np
|
|||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid.param_attr import ParamAttr
|
||||
from paddle.fluid.layer_helper import LayerHelper
|
||||
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
|
||||
|
||||
import math
|
||||
|
@ -130,10 +129,8 @@ class BottleneckBlock(fluid.dygraph.Layer):
|
|||
short = inputs
|
||||
else:
|
||||
short = self.short(inputs)
|
||||
y = fluid.layers.elementwise_add(x=short, y=conv2)
|
||||
|
||||
layer_helper = LayerHelper(self.full_name(), act='relu')
|
||||
return layer_helper.append_activation(y)
|
||||
y = fluid.layers.elementwise_add(x=short, y=conv2, act='relu')
|
||||
return y
|
||||
|
||||
|
||||
class BasicBlock(fluid.dygraph.Layer):
|
||||
|
@ -179,10 +176,8 @@ class BasicBlock(fluid.dygraph.Layer):
|
|||
short = inputs
|
||||
else:
|
||||
short = self.short(inputs)
|
||||
y = fluid.layers.elementwise_add(x=short, y=conv1)
|
||||
|
||||
layer_helper = LayerHelper(self.full_name(), act='relu')
|
||||
return layer_helper.append_activation(y)
|
||||
y = fluid.layers.elementwise_add(x=short, y=conv1, act='relu')
|
||||
return y
|
||||
|
||||
|
||||
class ResNet_vd(fluid.dygraph.Layer):
|
||||
|
|
|
@ -20,7 +20,6 @@ import numpy as np
|
|||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid.param_attr import ParamAttr
|
||||
from paddle.fluid.layer_helper import LayerHelper
|
||||
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
|
||||
|
||||
import math
|
||||
|
@ -122,10 +121,8 @@ class BottleneckBlock(fluid.dygraph.Layer):
|
|||
else:
|
||||
short = self.short(inputs)
|
||||
|
||||
y = fluid.layers.elementwise_add(x=short, y=conv2)
|
||||
|
||||
layer_helper = LayerHelper(self.full_name(), act='relu')
|
||||
return layer_helper.append_activation(y)
|
||||
y = fluid.layers.elementwise_add(x=short, y=conv2, act='relu')
|
||||
return y
|
||||
|
||||
|
||||
class ResNeXt(fluid.dygraph.Layer):
|
||||
|
|
|
@ -20,7 +20,6 @@ import numpy as np
|
|||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid.param_attr import ParamAttr
|
||||
from paddle.fluid.layer_helper import LayerHelper
|
||||
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
|
||||
|
||||
import math
|
||||
|
@ -46,7 +45,11 @@ class ConvBNLayer(fluid.dygraph.Layer):
|
|||
|
||||
self.is_vd_mode = is_vd_mode
|
||||
self._pool2d_avg = Pool2D(
|
||||
pool_size=2, pool_stride=2, pool_padding=0, pool_type='avg', ceil_mode=True)
|
||||
pool_size=2,
|
||||
pool_stride=2,
|
||||
pool_padding=0,
|
||||
pool_type='avg',
|
||||
ceil_mode=True)
|
||||
self._conv = Conv2D(
|
||||
num_channels=num_channels,
|
||||
num_filters=num_filters,
|
||||
|
@ -131,10 +134,8 @@ class BottleneckBlock(fluid.dygraph.Layer):
|
|||
else:
|
||||
short = self.short(inputs)
|
||||
|
||||
y = fluid.layers.elementwise_add(x=short, y=conv2)
|
||||
|
||||
layer_helper = LayerHelper(self.full_name(), act='relu')
|
||||
return layer_helper.append_activation(y)
|
||||
y = fluid.layers.elementwise_add(x=short, y=conv2, act='relu')
|
||||
return y
|
||||
|
||||
|
||||
class ResNeXt(fluid.dygraph.Layer):
|
||||
|
|
|
@ -19,7 +19,6 @@ import numpy as np
|
|||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid.param_attr import ParamAttr
|
||||
from paddle.fluid.layer_helper import LayerHelper
|
||||
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
|
||||
|
||||
import math
|
||||
|
@ -137,10 +136,8 @@ class BottleneckBlock(fluid.dygraph.Layer):
|
|||
short = inputs
|
||||
else:
|
||||
short = self.short(inputs)
|
||||
y = fluid.layers.elementwise_add(x=short, y=scale)
|
||||
|
||||
layer_helper = LayerHelper(self.full_name(), act='relu')
|
||||
return layer_helper.append_activation(y)
|
||||
y = fluid.layers.elementwise_add(x=short, y=scale, act='relu')
|
||||
return y
|
||||
|
||||
|
||||
class BasicBlock(fluid.dygraph.Layer):
|
||||
|
@ -194,10 +191,8 @@ class BasicBlock(fluid.dygraph.Layer):
|
|||
short = inputs
|
||||
else:
|
||||
short = self.short(inputs)
|
||||
y = fluid.layers.elementwise_add(x=short, y=scale)
|
||||
|
||||
layer_helper = LayerHelper(self.full_name(), act='relu')
|
||||
return layer_helper.append_activation(y)
|
||||
y = fluid.layers.elementwise_add(x=short, y=scale, act='relu')
|
||||
return y
|
||||
|
||||
|
||||
class SELayer(fluid.dygraph.Layer):
|
||||
|
|
|
@ -20,7 +20,6 @@ import numpy as np
|
|||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid.param_attr import ParamAttr
|
||||
from paddle.fluid.layer_helper import LayerHelper
|
||||
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
|
||||
|
||||
import math
|
||||
|
@ -131,10 +130,8 @@ class BottleneckBlock(fluid.dygraph.Layer):
|
|||
short = inputs
|
||||
else:
|
||||
short = self.short(inputs)
|
||||
y = fluid.layers.elementwise_add(x=short, y=scale)
|
||||
|
||||
layer_helper = LayerHelper(self.full_name(), act='relu')
|
||||
return layer_helper.append_activation(y)
|
||||
y = fluid.layers.elementwise_add(x=short, y=scale, act='relu')
|
||||
return y
|
||||
|
||||
|
||||
class SELayer(fluid.dygraph.Layer):
|
||||
|
|
|
@ -20,7 +20,6 @@ import numpy as np
|
|||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid.param_attr import ParamAttr
|
||||
from paddle.fluid.layer_helper import LayerHelper
|
||||
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
|
||||
from paddle.fluid.initializer import MSRA
|
||||
import math
|
||||
|
|
|
@ -1,7 +1,6 @@
|
|||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid.param_attr import ParamAttr
|
||||
from paddle.fluid.layer_helper import LayerHelper
|
||||
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear
|
||||
import math
|
||||
|
||||
|
@ -99,11 +98,10 @@ class EntryFlowBottleneckBlock(fluid.dygraph.Layer):
|
|||
def forward(self, inputs):
|
||||
conv0 = inputs
|
||||
short = self._short(inputs)
|
||||
layer_helper = LayerHelper(self.full_name(), act="relu")
|
||||
if self.relu_first:
|
||||
conv0 = layer_helper.append_activation(conv0)
|
||||
conv0 = fluid.layers.relu(conv0)
|
||||
conv1 = self._conv1(conv0)
|
||||
conv2 = layer_helper.append_activation(conv1)
|
||||
conv2 = fluid.layers.relu(conv1)
|
||||
conv2 = self._conv2(conv2)
|
||||
pool = self._pool(conv2)
|
||||
return fluid.layers.elementwise_add(x=short, y=pool)
|
||||
|
@ -177,12 +175,11 @@ class MiddleFlowBottleneckBlock(fluid.dygraph.Layer):
|
|||
name=name + "_branch2c_weights")
|
||||
|
||||
def forward(self, inputs):
|
||||
layer_helper = LayerHelper(self.full_name(), act="relu")
|
||||
conv0 = layer_helper.append_activation(inputs)
|
||||
conv0 = fluid.layers.relu(inputs)
|
||||
conv0 = self._conv_0(conv0)
|
||||
conv1 = layer_helper.append_activation(conv0)
|
||||
conv1 = fluid.layers.relu(conv0)
|
||||
conv1 = self._conv_1(conv1)
|
||||
conv2 = layer_helper.append_activation(conv1)
|
||||
conv2 = fluid.layers.relu(conv1)
|
||||
conv2 = self._conv_2(conv2)
|
||||
return fluid.layers.elementwise_add(x=inputs, y=conv2)
|
||||
|
||||
|
@ -276,10 +273,9 @@ class ExitFlowBottleneckBlock(fluid.dygraph.Layer):
|
|||
|
||||
def forward(self, inputs):
|
||||
short = self._short(inputs)
|
||||
layer_helper = LayerHelper(self.full_name(), act="relu")
|
||||
conv0 = layer_helper.append_activation(inputs)
|
||||
conv0 = fluid.layers.relu(inputs)
|
||||
conv1 = self._conv_1(conv0)
|
||||
conv2 = layer_helper.append_activation(conv1)
|
||||
conv2 = fluid.layers.relu(conv1)
|
||||
conv2 = self._conv_2(conv2)
|
||||
pool = self._pool(conv2)
|
||||
return fluid.layers.elementwise_add(x=short, y=pool)
|
||||
|
@ -306,12 +302,11 @@ class ExitFlow(fluid.dygraph.Layer):
|
|||
bias_attr=ParamAttr(name="fc_offset"))
|
||||
|
||||
def forward(self, inputs):
|
||||
layer_helper = LayerHelper(self.full_name(), act="relu")
|
||||
conv0 = self._conv_0(inputs)
|
||||
conv1 = self._conv_1(conv0)
|
||||
conv1 = layer_helper.append_activation(conv1)
|
||||
conv1 = fluid.layers.relu(conv1)
|
||||
conv2 = self._conv_2(conv1)
|
||||
conv2 = layer_helper.append_activation(conv2)
|
||||
conv2 = fluid.layers.relu(conv2)
|
||||
pool = self._pool(conv2)
|
||||
pool = fluid.layers.reshape(pool, [0, -1])
|
||||
out = self._out(pool)
|
||||
|
|
|
@ -1,7 +1,6 @@
|
|||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid.param_attr import ParamAttr
|
||||
from paddle.fluid.layer_helper import LayerHelper
|
||||
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
|
||||
|
||||
__all__ = ["Xception41_deeplab", "Xception65_deeplab", "Xception71_deeplab"]
|
||||
|
@ -226,13 +225,12 @@ class Xception_Block(fluid.dygraph.Layer):
|
|||
name=name + "/shortcut")
|
||||
|
||||
def forward(self, inputs):
|
||||
layer_helper = LayerHelper(self.full_name(), act='relu')
|
||||
if not self.activation_fn_in_separable_conv:
|
||||
x = layer_helper.append_activation(inputs)
|
||||
x = fluid.layers.relu(inputs)
|
||||
x = self._conv1(x)
|
||||
x = layer_helper.append_activation(x)
|
||||
x = fluid.layers.relu(x)
|
||||
x = self._conv2(x)
|
||||
x = layer_helper.append_activation(x)
|
||||
x = fluid.layers.relu(x)
|
||||
x = self._conv3(x)
|
||||
else:
|
||||
x = self._conv1(inputs)
|
||||
|
|
|
@ -31,12 +31,12 @@ def check_version():
|
|||
Log error and exit when the installed version of paddlepaddle is
|
||||
not satisfied.
|
||||
"""
|
||||
err = "PaddlePaddle version 2.0.0 or higher is required, " \
|
||||
err = "PaddlePaddle version 1.8.0 or higher is required, " \
|
||||
"or a suitable develop version is satisfied as well. \n" \
|
||||
"Please make sure the version is good with your code." \
|
||||
|
||||
try:
|
||||
fluid.require_version('2.0.0')
|
||||
fluid.require_version('1.8.0')
|
||||
except Exception:
|
||||
logger.error(err)
|
||||
sys.exit(1)
|
||||
|
|
|
@ -64,14 +64,18 @@ def print_dict(d, delimiter=0):
|
|||
placeholder = "-" * 60
|
||||
for k, v in sorted(d.items()):
|
||||
if isinstance(v, dict):
|
||||
logger.info("{}{} : ".format(delimiter * " ", logger.coloring(k, "HEADER")))
|
||||
logger.info("{}{} : ".format(delimiter * " ",
|
||||
logger.coloring(k, "HEADER")))
|
||||
print_dict(v, delimiter + 4)
|
||||
elif isinstance(v, list) and len(v) >= 1 and isinstance(v[0], dict):
|
||||
logger.info("{}{} : ".format(delimiter * " ", logger.coloring(str(k),"HEADER")))
|
||||
logger.info("{}{} : ".format(delimiter * " ",
|
||||
logger.coloring(str(k), "HEADER")))
|
||||
for value in v:
|
||||
print_dict(value, delimiter + 4)
|
||||
else:
|
||||
logger.info("{}{} : {}".format(delimiter * " ", logger.coloring(k,"HEADER"), logger.coloring(v,"OKGREEN")))
|
||||
logger.info("{}{} : {}".format(delimiter * " ",
|
||||
logger.coloring(k, "HEADER"),
|
||||
logger.coloring(v, "OKGREEN")))
|
||||
|
||||
if k.isupper():
|
||||
logger.info(placeholder)
|
||||
|
@ -138,7 +142,9 @@ def override(dl, ks, v):
|
|||
override(dl[k], ks[1:], v)
|
||||
else:
|
||||
if len(ks) == 1:
|
||||
assert ks[0] in dl, ('{} is not exist in {}'.format(ks[0], dl))
|
||||
# assert ks[0] in dl, ('{} is not exist in {}'.format(ks[0], dl))
|
||||
if not ks[0] in dl:
|
||||
logger.warning('A new filed ({}) detected!'.format(ks[0], dl))
|
||||
dl[ks[0]] = str2num(v)
|
||||
else:
|
||||
override(dl[ks[0]], ks[1:], v)
|
||||
|
|
|
@ -45,10 +45,7 @@ def _mkdir_if_not_exist(path):
|
|||
raise OSError('Failed to mkdir {}'.format(path))
|
||||
|
||||
|
||||
def load_dygraph_pretrain(
|
||||
model,
|
||||
path=None,
|
||||
load_static_weights=False, ):
|
||||
def load_dygraph_pretrain(model, path=None, load_static_weights=False):
|
||||
if not (os.path.isdir(path) or os.path.exists(path + '.pdparams')):
|
||||
raise ValueError("Model pretrain path {} does not "
|
||||
"exists.".format(path))
|
||||
|
@ -72,6 +69,32 @@ def load_dygraph_pretrain(
|
|||
return
|
||||
|
||||
|
||||
def load_distillation_model(model, pretrained_model, load_static_weights):
|
||||
logger.info("In distillation mode, teacher model will be "
|
||||
"loaded firstly before student model.")
|
||||
assert len(pretrained_model
|
||||
) == 2, "pretrained_model length should be 2 but got {}".format(
|
||||
len(pretrained_model))
|
||||
assert len(
|
||||
load_static_weights
|
||||
) == 2, "load_static_weights length should be 2 but got {}".format(
|
||||
len(load_static_weights))
|
||||
load_dygraph_pretrain(
|
||||
model.teacher,
|
||||
path=pretrained_model[0],
|
||||
load_static_weights=load_static_weights[0])
|
||||
logger.info(
|
||||
logger.coloring("Finish initing teacher model from {}".format(
|
||||
pretrained_model), "HEADER"))
|
||||
load_dygraph_pretrain(
|
||||
model.student,
|
||||
path=pretrained_model[1],
|
||||
load_static_weights=load_static_weights[1])
|
||||
logger.info(
|
||||
logger.coloring("Finish initing student model from {}".format(
|
||||
pretrained_model), "HEADER"))
|
||||
|
||||
|
||||
def init_model(config, net, optimizer=None):
|
||||
"""
|
||||
load model from checkpoint or pretrained_model
|
||||
|
@ -94,18 +117,17 @@ def init_model(config, net, optimizer=None):
|
|||
load_static_weights = config.get('load_static_weights', False)
|
||||
use_distillation = config.get('use_distillation', False)
|
||||
if pretrained_model:
|
||||
if not isinstance(pretrained_model, list):
|
||||
pretrained_model = [pretrained_model]
|
||||
if not isinstance(load_static_weights, list):
|
||||
load_static_weights = [load_static_weights] * len(pretrained_model)
|
||||
for idx, pretrained in enumerate(pretrained_model):
|
||||
load_static = load_static_weights[idx]
|
||||
model = net
|
||||
if use_distillation and not load_static:
|
||||
model = net.teacher
|
||||
if isinstance(pretrained_model,
|
||||
list): # load distillation pretrained model
|
||||
if not isinstance(load_static_weights, list):
|
||||
load_static_weights = [load_static_weights] * len(
|
||||
pretrained_model)
|
||||
load_distillation_model(net, pretrained_model, load_static_weights)
|
||||
else: # common load
|
||||
load_dygraph_pretrain(
|
||||
model, path=pretrained, load_static_weights=load_static)
|
||||
|
||||
net,
|
||||
path=pretrained_model,
|
||||
load_static_weights=load_static_weights)
|
||||
logger.info(
|
||||
logger.coloring("Finish initing model from {}".format(
|
||||
pretrained_model), "HEADER"))
|
||||
|
|
|
@ -35,8 +35,6 @@ from ppcls.utils.misc import AverageMeter
|
|||
from ppcls.utils import logger
|
||||
|
||||
from paddle.fluid.dygraph.base import to_variable
|
||||
from paddle.fluid.incubate.fleet.collective import fleet
|
||||
from paddle.fluid.incubate.fleet.collective import DistributedStrategy
|
||||
|
||||
|
||||
def create_dataloader():
|
||||
|
@ -243,43 +241,6 @@ def create_optimizer(config, parameter_list=None):
|
|||
return opt(lr, parameter_list)
|
||||
|
||||
|
||||
def dist_optimizer(config, optimizer):
|
||||
"""
|
||||
Create a distributed optimizer based on a normal optimizer
|
||||
|
||||
Args:
|
||||
config(dict):
|
||||
optimizer(): a normal optimizer
|
||||
|
||||
Returns:
|
||||
optimizer: a distributed optimizer
|
||||
"""
|
||||
exec_strategy = fluid.ExecutionStrategy()
|
||||
exec_strategy.num_threads = 3
|
||||
exec_strategy.num_iteration_per_drop_scope = 10
|
||||
|
||||
dist_strategy = DistributedStrategy()
|
||||
dist_strategy.nccl_comm_num = 1
|
||||
dist_strategy.fuse_all_reduce_ops = True
|
||||
dist_strategy.exec_strategy = exec_strategy
|
||||
optimizer = fleet.distributed_optimizer(optimizer, strategy=dist_strategy)
|
||||
|
||||
return optimizer
|
||||
|
||||
|
||||
def mixed_precision_optimizer(config, optimizer):
|
||||
use_fp16 = config.get('use_fp16', False)
|
||||
amp_scale_loss = config.get('amp_scale_loss', 1.0)
|
||||
use_dynamic_loss_scaling = config.get('use_dynamic_loss_scaling', False)
|
||||
if use_fp16:
|
||||
optimizer = fluid.contrib.mixed_precision.decorate(
|
||||
optimizer,
|
||||
init_loss_scaling=amp_scale_loss,
|
||||
use_dynamic_loss_scaling=use_dynamic_loss_scaling)
|
||||
|
||||
return optimizer
|
||||
|
||||
|
||||
def create_feeds(batch, use_mix):
|
||||
image = batch[0]
|
||||
if use_mix:
|
||||
|
@ -307,26 +268,22 @@ def run(dataloader, config, net, optimizer=None, epoch=0, mode='train'):
|
|||
|
||||
Returns:
|
||||
"""
|
||||
print_interval = config.get("print_interval", 10)
|
||||
use_mix = config.get("use_mix", False) and mode == "train"
|
||||
if use_mix:
|
||||
metric_list = OrderedDict([
|
||||
("loss", AverageMeter('loss', '7.4f')),
|
||||
("lr", AverageMeter(
|
||||
'lr', 'f', need_avg=False)),
|
||||
("batch_time", AverageMeter('elapse', '.3f')),
|
||||
('reader_time', AverageMeter('reader', '.3f')),
|
||||
])
|
||||
else:
|
||||
|
||||
metric_list = [
|
||||
("loss", AverageMeter('loss', '7.4f')),
|
||||
("lr", AverageMeter(
|
||||
'lr', 'f', need_avg=False)),
|
||||
("batch_time", AverageMeter('elapse', '.3f')),
|
||||
('reader_time', AverageMeter('reader', '.3f')),
|
||||
]
|
||||
if not use_mix:
|
||||
topk_name = 'top{}'.format(config.topk)
|
||||
metric_list = OrderedDict([
|
||||
("loss", AverageMeter('loss', '7.4f')),
|
||||
("top1", AverageMeter('top1', '.4f')),
|
||||
(topk_name, AverageMeter(topk_name, '.4f')),
|
||||
("lr", AverageMeter(
|
||||
'lr', 'f', need_avg=False)),
|
||||
("batch_time", AverageMeter('elapse', '.3f')),
|
||||
('reader_time', AverageMeter('reader', '.3f')),
|
||||
])
|
||||
metric_list.insert(1, (topk_name, AverageMeter(topk_name, '.4f')))
|
||||
metric_list.insert(1, ("top1", AverageMeter("top1", '.4f')))
|
||||
|
||||
metric_list = OrderedDict(metric_list)
|
||||
|
||||
tic = time.time()
|
||||
for idx, batch in enumerate(dataloader()):
|
||||
|
@ -354,17 +311,19 @@ def run(dataloader, config, net, optimizer=None, epoch=0, mode='train'):
|
|||
tic = time.time()
|
||||
|
||||
fetchs_str = ' '.join([str(m.value) for m in metric_list.values()])
|
||||
if mode == 'eval':
|
||||
logger.info("{:s} step:{:<4d} {:s}s".format(mode, idx, fetchs_str))
|
||||
else:
|
||||
epoch_str = "epoch:{:<3d}".format(epoch)
|
||||
step_str = "{:s} step:{:<4d}".format(mode, idx)
|
||||
|
||||
logger.info("{:s} {:s} {:s}s".format(
|
||||
logger.coloring(epoch_str, "HEADER")
|
||||
if idx == 0 else epoch_str,
|
||||
logger.coloring(step_str, "PURPLE"),
|
||||
logger.coloring(fetchs_str, 'OKGREEN')))
|
||||
if idx % print_interval == 0:
|
||||
if mode == 'eval':
|
||||
logger.info("{:s} step:{:<4d} {:s}s".format(mode, idx,
|
||||
fetchs_str))
|
||||
else:
|
||||
epoch_str = "epoch:{:<3d}".format(epoch)
|
||||
step_str = "{:s} step:{:<4d}".format(mode, idx)
|
||||
logger.info("{:s} {:s} {:s}s".format(
|
||||
logger.coloring(epoch_str, "HEADER")
|
||||
if idx == 0 else epoch_str,
|
||||
logger.coloring(step_str, "PURPLE"),
|
||||
logger.coloring(fetchs_str, 'OKGREEN')))
|
||||
|
||||
end_str = ' '.join([str(m.mean) for m in metric_list.values()] +
|
||||
[metric_list['batch_time'].total])
|
||||
|
|
|
@ -5,4 +5,5 @@ export PYTHONPATH=$PWD:$PYTHONPATH
|
|||
python -m paddle.distributed.launch \
|
||||
--selected_gpus="0,1,2,3" \
|
||||
tools/train.py \
|
||||
-c ./configs/ResNet/ResNet50.yaml
|
||||
-c ./configs/ResNet/ResNet50.yaml \
|
||||
-o print_interval=10
|
||||
|
|
Loading…
Reference in New Issue