delete norm_decay in resnet

pull/1917/head
zhiboniu 2022-05-18 11:58:53 +00:00
parent 05ecf1d045
commit 032c45c1d3
2 changed files with 2 additions and 22 deletions
ppcls
arch/backbone/legendary_models

View File

@ -117,7 +117,6 @@ class ConvBNLayer(TheseusLayer):
is_vd_mode=False,
act=None,
lr_mult=1.0,
norm_decay=0.,
data_format="NCHW"):
super().__init__()
self.is_vd_mode = is_vd_mode
@ -135,14 +134,8 @@ class ConvBNLayer(TheseusLayer):
bias_attr=False,
data_format=data_format)
weight_attr = ParamAttr(
learning_rate=lr_mult,
regularizer=L2Decay(norm_decay),
trainable=True)
bias_attr = ParamAttr(
learning_rate=lr_mult,
regularizer=L2Decay(norm_decay),
trainable=True)
weight_attr = ParamAttr(learning_rate=lr_mult, trainable=True)
bias_attr = ParamAttr(learning_rate=lr_mult, trainable=True)
self.bn = BatchNorm2D(
num_filters, weight_attr=weight_attr, bias_attr=bias_attr)
@ -166,7 +159,6 @@ class BottleneckBlock(TheseusLayer):
shortcut=True,
if_first=False,
lr_mult=1.0,
norm_decay=0.,
data_format="NCHW"):
super().__init__()
@ -176,7 +168,6 @@ class BottleneckBlock(TheseusLayer):
filter_size=1,
act="relu",
lr_mult=lr_mult,
norm_decay=norm_decay,
data_format=data_format)
self.conv1 = ConvBNLayer(
num_channels=num_filters,
@ -185,7 +176,6 @@ class BottleneckBlock(TheseusLayer):
stride=stride,
act="relu",
lr_mult=lr_mult,
norm_decay=norm_decay,
data_format=data_format)
self.conv2 = ConvBNLayer(
num_channels=num_filters,
@ -193,7 +183,6 @@ class BottleneckBlock(TheseusLayer):
filter_size=1,
act=None,
lr_mult=lr_mult,
norm_decay=norm_decay,
data_format=data_format)
if not shortcut:
@ -204,7 +193,6 @@ class BottleneckBlock(TheseusLayer):
stride=stride if if_first else 1,
is_vd_mode=False if if_first else True,
lr_mult=lr_mult,
norm_decay=norm_decay,
data_format=data_format)
self.relu = nn.ReLU()
@ -233,7 +221,6 @@ class BasicBlock(TheseusLayer):
shortcut=True,
if_first=False,
lr_mult=1.0,
norm_decay=0.,
data_format="NCHW"):
super().__init__()
@ -245,7 +232,6 @@ class BasicBlock(TheseusLayer):
stride=stride,
act="relu",
lr_mult=lr_mult,
norm_decay=norm_decay,
data_format=data_format)
self.conv1 = ConvBNLayer(
num_channels=num_filters,
@ -253,7 +239,6 @@ class BasicBlock(TheseusLayer):
filter_size=3,
act=None,
lr_mult=lr_mult,
norm_decay=norm_decay,
data_format=data_format)
if not shortcut:
self.short = ConvBNLayer(
@ -263,7 +248,6 @@ class BasicBlock(TheseusLayer):
stride=stride if if_first else 1,
is_vd_mode=False if if_first else True,
lr_mult=lr_mult,
norm_decay=norm_decay,
data_format=data_format)
self.shortcut = shortcut
self.relu = nn.ReLU()
@ -300,7 +284,6 @@ class ResNet(TheseusLayer):
stem_act="relu",
class_num=1000,
lr_mult_list=[1.0, 1.0, 1.0, 1.0, 1.0],
norm_decay=0.,
data_format="NCHW",
input_image_channel=3,
return_patterns=None,
@ -340,7 +323,6 @@ class ResNet(TheseusLayer):
stride=s,
act=stem_act,
lr_mult=self.lr_mult_list[0],
norm_decay=norm_decay,
data_format=data_format)
for in_c, out_c, k, s in self.stem_cfg[version]
])
@ -359,7 +341,6 @@ class ResNet(TheseusLayer):
shortcut=shortcut,
if_first=block_idx == i == 0 if version == "vd" else True,
lr_mult=self.lr_mult_list[block_idx + 1],
norm_decay=norm_decay,
data_format=data_format))
shortcut = True
self.blocks = nn.Sequential(*block_list)

View File

@ -20,7 +20,6 @@ Arch:
name: "ResNet50"
pretrained: True
class_num: 26
norm_decay: 0.0005
# loss function config for traing/eval process
Loss: