delete norm_decay in resnet
parent
05ecf1d045
commit
032c45c1d3
ppcls
arch/backbone/legendary_models
configs/Attr
|
@ -117,7 +117,6 @@ class ConvBNLayer(TheseusLayer):
|
|||
is_vd_mode=False,
|
||||
act=None,
|
||||
lr_mult=1.0,
|
||||
norm_decay=0.,
|
||||
data_format="NCHW"):
|
||||
super().__init__()
|
||||
self.is_vd_mode = is_vd_mode
|
||||
|
@ -135,14 +134,8 @@ class ConvBNLayer(TheseusLayer):
|
|||
bias_attr=False,
|
||||
data_format=data_format)
|
||||
|
||||
weight_attr = ParamAttr(
|
||||
learning_rate=lr_mult,
|
||||
regularizer=L2Decay(norm_decay),
|
||||
trainable=True)
|
||||
bias_attr = ParamAttr(
|
||||
learning_rate=lr_mult,
|
||||
regularizer=L2Decay(norm_decay),
|
||||
trainable=True)
|
||||
weight_attr = ParamAttr(learning_rate=lr_mult, trainable=True)
|
||||
bias_attr = ParamAttr(learning_rate=lr_mult, trainable=True)
|
||||
|
||||
self.bn = BatchNorm2D(
|
||||
num_filters, weight_attr=weight_attr, bias_attr=bias_attr)
|
||||
|
@ -166,7 +159,6 @@ class BottleneckBlock(TheseusLayer):
|
|||
shortcut=True,
|
||||
if_first=False,
|
||||
lr_mult=1.0,
|
||||
norm_decay=0.,
|
||||
data_format="NCHW"):
|
||||
super().__init__()
|
||||
|
||||
|
@ -176,7 +168,6 @@ class BottleneckBlock(TheseusLayer):
|
|||
filter_size=1,
|
||||
act="relu",
|
||||
lr_mult=lr_mult,
|
||||
norm_decay=norm_decay,
|
||||
data_format=data_format)
|
||||
self.conv1 = ConvBNLayer(
|
||||
num_channels=num_filters,
|
||||
|
@ -185,7 +176,6 @@ class BottleneckBlock(TheseusLayer):
|
|||
stride=stride,
|
||||
act="relu",
|
||||
lr_mult=lr_mult,
|
||||
norm_decay=norm_decay,
|
||||
data_format=data_format)
|
||||
self.conv2 = ConvBNLayer(
|
||||
num_channels=num_filters,
|
||||
|
@ -193,7 +183,6 @@ class BottleneckBlock(TheseusLayer):
|
|||
filter_size=1,
|
||||
act=None,
|
||||
lr_mult=lr_mult,
|
||||
norm_decay=norm_decay,
|
||||
data_format=data_format)
|
||||
|
||||
if not shortcut:
|
||||
|
@ -204,7 +193,6 @@ class BottleneckBlock(TheseusLayer):
|
|||
stride=stride if if_first else 1,
|
||||
is_vd_mode=False if if_first else True,
|
||||
lr_mult=lr_mult,
|
||||
norm_decay=norm_decay,
|
||||
data_format=data_format)
|
||||
|
||||
self.relu = nn.ReLU()
|
||||
|
@ -233,7 +221,6 @@ class BasicBlock(TheseusLayer):
|
|||
shortcut=True,
|
||||
if_first=False,
|
||||
lr_mult=1.0,
|
||||
norm_decay=0.,
|
||||
data_format="NCHW"):
|
||||
super().__init__()
|
||||
|
||||
|
@ -245,7 +232,6 @@ class BasicBlock(TheseusLayer):
|
|||
stride=stride,
|
||||
act="relu",
|
||||
lr_mult=lr_mult,
|
||||
norm_decay=norm_decay,
|
||||
data_format=data_format)
|
||||
self.conv1 = ConvBNLayer(
|
||||
num_channels=num_filters,
|
||||
|
@ -253,7 +239,6 @@ class BasicBlock(TheseusLayer):
|
|||
filter_size=3,
|
||||
act=None,
|
||||
lr_mult=lr_mult,
|
||||
norm_decay=norm_decay,
|
||||
data_format=data_format)
|
||||
if not shortcut:
|
||||
self.short = ConvBNLayer(
|
||||
|
@ -263,7 +248,6 @@ class BasicBlock(TheseusLayer):
|
|||
stride=stride if if_first else 1,
|
||||
is_vd_mode=False if if_first else True,
|
||||
lr_mult=lr_mult,
|
||||
norm_decay=norm_decay,
|
||||
data_format=data_format)
|
||||
self.shortcut = shortcut
|
||||
self.relu = nn.ReLU()
|
||||
|
@ -300,7 +284,6 @@ class ResNet(TheseusLayer):
|
|||
stem_act="relu",
|
||||
class_num=1000,
|
||||
lr_mult_list=[1.0, 1.0, 1.0, 1.0, 1.0],
|
||||
norm_decay=0.,
|
||||
data_format="NCHW",
|
||||
input_image_channel=3,
|
||||
return_patterns=None,
|
||||
|
@ -340,7 +323,6 @@ class ResNet(TheseusLayer):
|
|||
stride=s,
|
||||
act=stem_act,
|
||||
lr_mult=self.lr_mult_list[0],
|
||||
norm_decay=norm_decay,
|
||||
data_format=data_format)
|
||||
for in_c, out_c, k, s in self.stem_cfg[version]
|
||||
])
|
||||
|
@ -359,7 +341,6 @@ class ResNet(TheseusLayer):
|
|||
shortcut=shortcut,
|
||||
if_first=block_idx == i == 0 if version == "vd" else True,
|
||||
lr_mult=self.lr_mult_list[block_idx + 1],
|
||||
norm_decay=norm_decay,
|
||||
data_format=data_format))
|
||||
shortcut = True
|
||||
self.blocks = nn.Sequential(*block_list)
|
||||
|
|
|
@ -20,7 +20,6 @@ Arch:
|
|||
name: "ResNet50"
|
||||
pretrained: True
|
||||
class_num: 26
|
||||
norm_decay: 0.0005
|
||||
|
||||
# loss function config for traing/eval process
|
||||
Loss:
|
||||
|
|
Loading…
Reference in New Issue