diff --git a/docs/zh_CN/inference_deployment/paddle_serving_deploy.md b/docs/zh_CN/inference_deployment/paddle_serving_deploy.md index 26e1e79a7..26b237d19 100644 --- a/docs/zh_CN/inference_deployment/paddle_serving_deploy.md +++ b/docs/zh_CN/inference_deployment/paddle_serving_deploy.md @@ -123,13 +123,14 @@ python3 pipeline_http_client.py ## 4.图像识别服务部署 使用PaddleServing做服务化部署时,需要将保存的inference模型转换为serving易于部署的模型。 下面以PP-ShiTu中的超轻量商品识别模型为例,介绍图像识别服务的部署。 ## 4.1 模型转换 -- 下载检测inference模型和商品识别inference模型 +- 下载通用检测inference模型和商品识别inference模型 ``` cd deploy # 下载并解压商品识别模型 wget -P models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/general_PPLCNet_x2_5_lite_v1.0_infer.tar cd models tar -xf general_PPLCNet_x2_5_lite_v1.0_infer.tar +# 下载并解压通用检测模型 wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/inference/picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer.tar tar -xf picodet_PPLCNet_x2_5_mainbody_lite_v1.0_infer.tar ``` @@ -199,14 +200,14 @@ recognition_web_service.py # 启动pipeline服务端的脚本 python3 recognition_web_service.py &>log.txt & ``` 成功启动服务后,log.txt中会打印类似如下日志 -![](../../../deploy/paddleserving/recognition/imgs/start_server_recog.png) +![](../../../deploy/paddleserving/imgs/start_server_recog.png) - 发送请求: ``` python3 pipeline_http_client.py ``` 成功运行后,模型预测的结果会打印在cmd窗口中,结果示例为: -![](../../../deploy/paddleserving/recognition/imgs/results_recog.png) +![](../../../deploy/paddleserving/imgs/results_recog.png) ## 5.FAQ