add attribute strongbaseline

pull/1917/head
zhiboniu 2022-05-11 07:01:26 +00:00
parent 675e60d5a5
commit 0a3ecf60b4
10 changed files with 463 additions and 23 deletions

View File

@ -70,6 +70,7 @@ from ppcls.arch.backbone.model_zoo.van import VAN_tiny
from ppcls.arch.backbone.variant_models.resnet_variant import ResNet50_last_stage_stride1
from ppcls.arch.backbone.variant_models.vgg_variant import VGG19Sigmoid
from ppcls.arch.backbone.variant_models.pp_lcnet_variant import PPLCNet_x2_5_Tanh
from ppcls.arch.backbone.model_zoo.strongbaseline_attr import StrongBaselineAttr
# help whl get all the models' api (class type) and components' api (func type)

View File

@ -0,0 +1,98 @@
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from paddle.nn.initializer import Uniform
import math
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url, get_weights_path_from_url
from ..legendary_models.resnet import ResNet50
MODEL_URLS = {"StrongBaselineAttr": "strongbaseline_attr_clas", }
__all__ = list(MODEL_URLS.keys())
class StrongBaselinePAR(nn.Layer):
def __init__(
self,
**config, ):
"""
A strong baseline for Pedestrian Attribute Recognition, see https://arxiv.org/abs/2107.03576
Args:
backbone (object): backbone instance
classifier (object): classifier instance
loss (object): loss instance
"""
super(StrongBaselinePAR, self).__init__()
backbone_config = config["Backbone"]
backbone_name = backbone_config.pop("name")
self.backbone = eval(backbone_name)(**backbone_config)
def forward(self, x):
fc_feat = self.backbone(x)
output = F.sigmoid(fc_feat)
return output
def _load_pretrained(pretrained, model, model_url, use_ssld):
if pretrained is False:
pass
elif pretrained is True:
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
elif isinstance(pretrained, str):
load_dygraph_pretrain(model, pretrained)
else:
raise RuntimeError(
"pretrained type is not available. Please use `string` or `boolean` type."
)
def load_pretrained(model, local_weight_path):
# local_weight_path = get_weights_path_from_url(model_url).replace(
# ".pdparams", "")
param_state_dict = paddle.load(local_weight_path + ".pdparams")
model_dict = model.state_dict()
model_dict_keys = list(model_dict.keys())
param_state_dict_keys = list(param_state_dict.keys())
# assert(len(model_dict_keys) == len(param_state_dict_keys)), "{} == {}".format(len(model_dict_keys), len(param_state_dict_keys))
for idx in range(len(model_dict.keys())):
model_key = model_dict_keys[idx]
param_key = param_state_dict_keys[idx]
if model_dict[model_key].shape == param_state_dict[param_key].shape:
model_dict[model_key] = param_state_dict[param_key]
else:
print("miss match idx: {} weights: {} vs {}; {} vs {}".format(
idx, model_key, param_key, model_dict[
model_key].shape, param_state_dict[param_key].shape))
model.set_dict(model_dict)
def StrongBaselineAttr(pretrained=True, use_ssld=False, **kwargs):
model = StrongBaselinePAR(**kwargs)
_load_pretrained(MODEL_URLS["StrongBaselineAttr"], model, None, None)
return model

View File

@ -0,0 +1,110 @@
# global configs
Global:
checkpoints: null
pretrained_model: null
output_dir: "./output/"
device: "gpu"
save_interval: 5
eval_during_train: False
eval_interval: 1
epochs: 30
print_batch_step: 20
use_visualdl: False
# used for static mode and model export
image_shape: [3, 256, 192]
save_inference_dir: "./inference"
use_multilabel: True
metric_attr: True
# model architecture
Arch:
name: "StrongBaselineAttr"
Backbone:
name: "ResNet50"
class_num: 26
# loss function config for traing/eval process
Loss:
Train:
- BCELoss:
weight: 1.0
Eval:
- BCELoss:
weight: 1.0
Optimizer:
name: Adam
lr:
name: Piecewise
decay_epochs: [12, 18, 24, 28]
values: [0.0001, 0.00001, 0.000001, 0.0000001]
regularizer:
name: 'L2'
coeff: 0.0005
clip_norm: 10
# data loader for train and eval
DataLoader:
Train:
dataset:
name: AttrDataset
image_root: "dataset/xingrenfenxi/data/"
cls_label_path: "dataset/xingrenfenxi/all_qiye.pkl"
split: 'trainval'
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
# - ResizeImage:
# size: [192, 256]
- RandCropImage:
size: [192, 256]
scale: [0.9, 1.1]
ratio: [0.75, 0.75]
- RandFlipImage:
flip_code: 1
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 64
drop_last: True
shuffle: True
loader:
num_workers: 4
use_shared_memory: True
Eval:
dataset:
name: AttrDataset
image_root: "dataset/xingrenfenxi/data/"
cls_label_path: "dataset/xingrenfenxi/all_qiye.pkl"
split: 'test'
transform_ops:
- DecodeImage:
to_rgb: True
channel_first: False
- ResizeImage:
size: [192, 256]
- NormalizeImage:
scale: 1.0/255.0
mean: [0.485, 0.456, 0.406]
std: [0.229, 0.224, 0.225]
order: ''
sampler:
name: DistributedBatchSampler
batch_size: 64
drop_last: False
shuffle: False
loader:
num_workers: 4
use_shared_memory: True
Metric:
Eval:
- ATTRMetric:

View File

@ -30,6 +30,7 @@ from ppcls.data.dataloader.icartoon_dataset import ICartoonDataset
from ppcls.data.dataloader.mix_dataset import MixDataset
from ppcls.data.dataloader.multi_scale_dataset import MultiScaleDataset
from ppcls.data.dataloader.person_dataset import Market1501, MSMT17
from ppcls.data.dataloader.attr_dataset import AttrDataset
# sampler

View File

@ -18,7 +18,7 @@ import time
import platform
import paddle
from ppcls.utils.misc import AverageMeter
from ppcls.utils.misc import AverageMeter, AttrMeter
from ppcls.utils import logger
@ -32,6 +32,10 @@ def classification_eval(engine, epoch_id=0):
}
print_batch_step = engine.config["Global"]["print_batch_step"]
if engine.eval_metric_func is not None and engine.config["Global"][
"metric_attr"]:
output_info["attr"] = AttrMeter(threshold=0.5)
metric_key = None
tic = time.time()
accum_samples = 0
@ -121,17 +125,22 @@ def classification_eval(engine, epoch_id=0):
output_info[key] = AverageMeter(key, '7.5f')
output_info[key].update(loss_dict[key].numpy()[0],
current_samples)
# calc metric
if engine.eval_metric_func is not None:
metric_dict = engine.eval_metric_func(preds, labels)
for key in metric_dict:
if metric_key is None:
metric_key = key
if key not in output_info:
output_info[key] = AverageMeter(key, '7.5f')
output_info[key].update(metric_dict[key].numpy()[0],
current_samples)
if engine.config["Global"]["metric_attr"]:
metric_dict = engine.eval_metric_func(preds, labels)
metric_key = "attr"
output_info["attr"].update(metric_dict)
else:
metric_dict = engine.eval_metric_func(preds, labels)
for key in metric_dict:
if metric_key is None:
metric_key = key
if key not in output_info:
output_info[key] = AverageMeter(key, '7.5f')
output_info[key].update(metric_dict[key].numpy()[0],
current_samples)
time_info["batch_cost"].update(time.time() - tic)
@ -144,10 +153,13 @@ def classification_eval(engine, epoch_id=0):
ips_msg = "ips: {:.5f} images/sec".format(
batch_size / time_info["batch_cost"].avg)
metric_msg = ", ".join([
"{}: {:.5f}".format(key, output_info[key].val)
for key in output_info
])
if engine.config["Global"]["metric_attr"]:
metric_msg = ""
else:
metric_msg = ", ".join([
"{}: {:.5f}".format(key, output_info[key].val)
for key in output_info
])
logger.info("[Eval][Epoch {}][Iter: {}/{}]{}, {}, {}".format(
epoch_id, iter_id,
len(engine.eval_dataloader), metric_msg, time_msg, ips_msg))
@ -155,13 +167,28 @@ def classification_eval(engine, epoch_id=0):
tic = time.time()
if engine.use_dali:
engine.eval_dataloader.reset()
metric_msg = ", ".join([
"{}: {:.5f}".format(key, output_info[key].avg) for key in output_info
])
logger.info("[Eval][Epoch {}][Avg]{}".format(epoch_id, metric_msg))
# do not try to save best eval.model
if engine.eval_metric_func is None:
return -1
# return 1st metric in the dict
return output_info[metric_key].avg
if engine.config["Global"]["metric_attr"]:
metric_msg = ", ".join([
"evalres: ma: {:.5f} label_f1: {:.5f} label_pos_recall: {:.5f} label_neg_recall: {:.5f} instance_f1: {:.5f} instance_acc: {:.5f} instance_prec: {:.5f} instance_recall: {:.5f}".
format(*output_info["attr"].res())
])
logger.info("[Eval][Epoch {}][Avg]{}".format(epoch_id, metric_msg))
# do not try to save best eval.model
if engine.eval_metric_func is None:
return -1
# return 1st metric in the dict
return output_info["attr"].res()[0]
else:
metric_msg = ", ".join([
"{}: {:.5f}".format(key, output_info[key].avg)
for key in output_info
])
logger.info("[Eval][Epoch {}][Avg]{}".format(epoch_id, metric_msg))
# do not try to save best eval.model
if engine.eval_metric_func is None:
return -1
# return 1st metric in the dict
return output_info[metric_key].avg

View File

@ -26,6 +26,7 @@ from .distillationloss import DistillationKLDivLoss
from .distillationloss import DistillationDKDLoss
from .multilabelloss import MultiLabelLoss
from .afdloss import AFDLoss
from .bceloss import BCELoss
from .deephashloss import DSHSDLoss
from .deephashloss import LCDSHLoss

View File

@ -0,0 +1,59 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
def ratio2weight(targets, ratio):
# print(targets)
pos_weights = targets * (1. - ratio)
neg_weights = (1. - targets) * ratio
weights = paddle.exp(neg_weights + pos_weights)
# for RAP dataloader, targets element may be 2, with or without smooth, some element must great than 1
weights = weights - weights * (targets > 1)
return weights
class BCELoss(nn.Layer):
"""BCE Loss.
Args:
"""
def __init__(self,
sample_weight=True,
size_sum=True,
smoothing=None,
weight=1.0):
super(BCELoss, self).__init__()
self.sample_weight = sample_weight
self.size_sum = size_sum
self.hyper = 0.8
self.smoothing = smoothing
def forward(self, logits, labels):
targets, ratio = labels
if self.smoothing is not None:
targets = (1 - self.smoothing) * targets + self.smoothing * (
1 - targets)
targets = paddle.cast(targets, 'float32')
loss_m = F.binary_cross_entropy_with_logits(
logits, targets, reduction='none')
targets_mask = paddle.cast(targets > 0.5, 'float32')
if self.sample_weight:
weight = ratio2weight(targets_mask, ratio[0])
weight = weight * (targets > -1)
loss_m = loss_m * weight
loss = loss_m.sum(1).mean() if self.size_sum else loss_m.sum()
return {"BCELoss": loss}

View File

@ -20,6 +20,7 @@ from .metrics import TopkAcc, mAP, mINP, Recallk, Precisionk
from .metrics import DistillationTopkAcc
from .metrics import GoogLeNetTopkAcc
from .metrics import HammingDistance, AccuracyScore
from .metrics import ATTRMetric
class CombinedMetrics(nn.Layer):

View File

@ -22,6 +22,8 @@ from sklearn.metrics import accuracy_score as accuracy_metric
from sklearn.metrics import multilabel_confusion_matrix
from sklearn.preprocessing import binarize
from easydict import EasyDict
class TopkAcc(nn.Layer):
def __init__(self, topk=(1, 5)):
@ -308,3 +310,59 @@ class AccuracyScore(MutiLabelMetric):
sum(tps) + sum(tns) + sum(fns) + sum(fps))
metric_dict["AccuracyScore"] = paddle.to_tensor(accuracy)
return metric_dict
def get_attr_metrics(gt_label, preds_probs, threshold):
"""
index: evaluated label index
"""
pred_label = (preds_probs > threshold).astype(int)
eps = 1e-20
result = EasyDict()
has_fuyi = gt_label == -1
pred_label[has_fuyi] = -1
###############################
# label metrics
# TP + FN
result.gt_pos = np.sum((gt_label == 1), axis=0).astype(float)
# TN + FP
result.gt_neg = np.sum((gt_label == 0), axis=0).astype(float)
# TP
result.true_pos = np.sum((gt_label == 1) * (pred_label == 1),
axis=0).astype(float)
# TN
result.true_neg = np.sum((gt_label == 0) * (pred_label == 0),
axis=0).astype(float)
# FP
result.false_pos = np.sum(((gt_label == 0) * (pred_label == 1)),
axis=0).astype(float)
# FN
result.false_neg = np.sum(((gt_label == 1) * (pred_label == 0)),
axis=0).astype(float)
################
# instance metrics
result.gt_pos_ins = np.sum((gt_label == 1), axis=1).astype(float)
result.true_pos_ins = np.sum((pred_label == 1), axis=1).astype(float)
# true positive
result.intersect_pos = np.sum((gt_label == 1) * (pred_label == 1),
axis=1).astype(float)
# IOU
result.union_pos = np.sum(((gt_label == 1) + (pred_label == 1)),
axis=1).astype(float)
return result
class ATTRMetric(nn.Layer):
def __init__(self, threshold=0.5):
super().__init__()
self.threshold = threshold
def __call__(self, output, target):
metric_dict = get_attr_metrics(target[0].numpy(),
output.numpy(), self.threshold)
return metric_dict

View File

@ -61,3 +61,87 @@ class AverageMeter(object):
def value(self):
return '{self.name}: {self.val:{self.fmt}}{self.postfix}'.format(
self=self)
class AttrMeter(object):
"""
Computes and stores the average and current value
Code was based on https://github.com/pytorch/examples/blob/master/imagenet/main.py
"""
def __init__(self, threshold=0.5):
self.threshold = threshold
self.reset()
def reset(self):
self.gt_pos = 0
self.gt_neg = 0
self.true_pos = 0
self.true_neg = 0
self.false_pos = 0
self.false_neg = 0
self.gt_pos_ins = []
self.true_pos_ins = []
self.intersect_pos = []
self.union_pos = []
def update(self, metric_dict):
self.gt_pos += metric_dict['gt_pos']
self.gt_neg += metric_dict['gt_neg']
self.true_pos += metric_dict['true_pos']
self.true_neg += metric_dict['true_neg']
self.false_pos += metric_dict['false_pos']
self.false_neg += metric_dict['false_neg']
self.gt_pos_ins += metric_dict['gt_pos_ins'].tolist()
self.true_pos_ins += metric_dict['true_pos_ins'].tolist()
self.intersect_pos += metric_dict['intersect_pos'].tolist()
self.union_pos += metric_dict['union_pos'].tolist()
def res(self):
import numpy as np
eps = 1e-20
label_pos_recall = 1.0 * self.true_pos / (
self.gt_pos + eps) # true positive
label_neg_recall = 1.0 * self.true_neg / (
self.gt_neg + eps) # true negative
# mean accuracy
label_ma = (label_pos_recall + label_neg_recall) / 2
label_pos_recall = np.mean(label_pos_recall)
label_neg_recall = np.mean(label_neg_recall)
label_prec = (self.true_pos / (self.true_pos + self.false_pos + eps))
label_acc = (self.true_pos /
(self.true_pos + self.false_pos + self.false_neg + eps))
label_f1 = np.mean(2 * label_prec * label_pos_recall /
(label_prec + label_pos_recall + eps))
ma = (np.mean(label_ma))
self.gt_pos_ins = np.array(self.gt_pos_ins)
self.true_pos_ins = np.array(self.true_pos_ins)
self.intersect_pos = np.array(self.intersect_pos)
self.union_pos = np.array(self.union_pos)
instance_acc = self.intersect_pos / (self.union_pos + eps)
instance_prec = self.intersect_pos / (self.true_pos_ins + eps)
instance_recall = self.intersect_pos / (self.gt_pos_ins + eps)
instance_f1 = 2 * instance_prec * instance_recall / (
instance_prec + instance_recall + eps)
instance_acc = np.mean(instance_acc)
instance_prec = np.mean(instance_prec)
instance_recall = np.mean(instance_recall)
instance_f1 = 2 * instance_prec * instance_recall / (
instance_prec + instance_recall + eps)
instance_acc = np.mean(instance_acc)
instance_prec = np.mean(instance_prec)
instance_recall = np.mean(instance_recall)
instance_f1 = np.mean(instance_f1)
res = [
ma, label_f1, label_pos_recall, label_neg_recall, instance_f1,
instance_acc, instance_prec, instance_recall
]
return res