merge devevelop

pull/1819/head
HydrogenSulfate 2022-05-05 14:42:06 +08:00
commit 0b1481402b
56 changed files with 298 additions and 231 deletions

View File

@ -7,7 +7,7 @@
飞桨图像识别套件PaddleClas是飞桨为工业界和学术界所准备的一个图像识别任务的工具集助力使用者训练出更好的视觉模型和应用落地。
**近期更新**
- 2022.4.21 新增 CVPR2022 oral论文 [MixFormmer](https://arxiv.org/pdf/2204.02557.pdf) 相关[代码](https://github.com/PaddlePaddle/PaddleClas/pull/1820/files)。
- 2022.4.21 新增 CVPR2022 oral论文 [MixFormer](https://arxiv.org/pdf/2204.02557.pdf) 相关[代码](https://github.com/PaddlePaddle/PaddleClas/pull/1820/files)。
- 2022.1.27 全面升级文档;新增[PaddleServing C++ pipeline部署方式](./deploy/paddleserving)和[18M图像识别安卓部署Demo](./deploy/lite_shitu)。
- 2021.11.1 发布[PP-ShiTu技术报告](https://arxiv.org/pdf/2111.00775.pdf)新增饮料识别demo
- 2021.10.23 发布轻量级图像识别系统PP-ShiTuCPU上0.2s即可完成在10w+库的图像识别。

View File

@ -8,7 +8,7 @@ PaddleClas is an image recognition toolset for industry and academia, helping us
**Recent updates**
- 2022.4.21 Added the related [code](https://github.com/PaddlePaddle/PaddleClas/pull/1820/files) of the CVPR2022 oral paper [MixFormmer](https://arxiv.org/pdf/2204.02557.pdf).
- 2022.4.21 Added the related [code](https://github.com/PaddlePaddle/PaddleClas/pull/1820/files) of the CVPR2022 oral paper [MixFormer](https://arxiv.org/pdf/2204.02557.pdf).
- 2021.09.17 Add PP-LCNet series model developed by PaddleClas, these models show strong competitiveness on Intel CPUs.
For the introduction of PP-LCNet, please refer to [paper](https://arxiv.org/pdf/2109.15099.pdf) or [PP-LCNet model introduction](docs/en/models/PP-LCNet_en.md). The metrics and pretrained model are available [here](docs/en/ImageNet_models_en.md).

View File

@ -92,9 +92,9 @@ PaddleClas 提供了转换并优化后的推理模型,可以直接参考下方
```shell
# 进入lite_ppshitu目录
cd $PaddleClas/deploy/lite_shitu
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/lite/ppshitu_lite_models_v1.0.tar
tar -xf ppshitu_lite_models_v1.0.tar
rm -f ppshitu_lite_models_v1.0.tar
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/lite/ppshitu_lite_models_v1.1.tar
tar -xf ppshitu_lite_models_v1.1.tar
rm -f ppshitu_lite_models_v1.1.tar
```
#### 2.1.2 使用其他模型
@ -173,15 +173,11 @@ cp $code_path/PaddleDetection/inference/picodet_lcnet_x2_5_640_mainbody/mainbody
2. 转换识别模型
请先参考 [识别模型转分类模型](../../docs/zh_CN/advanced_tutorials/gallery2fc.md) 完成识别模型到分类模型的转换。
在得到 inference 推理模型(后缀名为 `.pdmodel`、`.pdiparams`)以及 `label.txt` 后,再使用 PaddleLite opt 工具完成模型优化,命令如下:
```shell
# 转换为Paddle-Lite模型
paddle_lite_opt --model_file=inference/inference.pdmodel --param_file=inference/inference.pdiparams --optimize_out=inference/rec
# 将模型、label文件拷贝到lite_shitu下
# 将模型文件拷贝到lite_shitu下
cp inference/rec.nb deploy/lite_shitu/models/
cp inference/label.txt deploy/lite_shitu/models/
cd deploy/lite_shitu
```
@ -191,10 +187,10 @@ cd deploy/lite_shitu
```shell
# 如果测试单张图像
python generate_json_config.py --det_model_path ppshitu_lite_models_v1.0/mainbody_PPLCNet_x2_5_640_quant_v1.0_lite.nb --rec_model_path ppshitu_lite_models_v1.0/general_PPLCNet_x2_5_lite_v1.0_infer.nb --img_path images/demo.jpg
python generate_json_config.py --det_model_path ppshitu_lite_models_v1.1/mainbody_PPLCNet_x2_5_640_quant_v1.1_lite.nb --rec_model_path ppshitu_lite_models_v1.1/general_PPLCNet_x2_5_lite_v1.1_infer.nb --img_path images/demo.jpg
# or
# 如果测试多张图像
python generate_json_config.py --det_model_path ppshitu_lite_models_v1.0/mainbody_PPLCNet_x2_5_640_quant_v1.0_lite.nb --rec_model_path ppshitu_lite_models_v1.0/general_PPLCNet_x2_5_lite_v1.0_infer.nb --img_dir images
python generate_json_config.py --det_model_path ppshitu_lite_models_v1.1/mainbody_PPLCNet_x2_5_640_quant_v1.1_lite.nb --rec_model_path ppshitu_lite_models_v1.1/general_PPLCNet_x2_5_lite_v1.1_infer.nb --img_dir images
# 执行完成后会在lit_shitu下生成shitu_config.json配置文件
```
@ -263,7 +259,7 @@ make ARM_ABI=arm8
```shell
mkdir deploy
mv ppshitu_lite_models_v1.0 deploy/
mv ppshitu_lite_models_v1.1 deploy/
mv drink_dataset_v1.0 deploy/
mv images deploy/
mv shitu_config.json deploy/
@ -277,12 +273,12 @@ cp ../../../cxx/lib/libpaddle_light_api_shared.so deploy/
```shell
deploy/
|-- ppshitu_lite_models_v1.0/
| |--mainbody_PPLCNet_x2_5_lite_v1.0_infer.nb 优化后的主体检测模型文件
| |--general_PPLCNet_x2_5_quant_v1.0_lite.nb 优化后的识别模型文件
|-- ppshitu_lite_models_v1.1/
| |--mainbody_PPLCNet_x2_5_640_quant_v1.1_lite.nb 优化后的主体检测模型文件
| |--general_PPLCNet_x2_5_lite_v1.1_infer.nb 优化后的识别模型文件
|-- images/
| |--demo.jpg 图片文件
|-- drink_dataset_v1.0/ 瓶装饮料demo数据
|-- drink_dataset_v1.0/ 瓶装饮料demo数据
| |--index 检索index目录
|-- pp_shitu 生成的移动端执行文件
|-- shitu_config.json 执行时参数配置文件

View File

@ -42,11 +42,12 @@ Optimizer:
no_weight_decay_name: pos_embed cls_token .bias norm
one_dim_param_no_weight_decay: True
lr:
# for 8 cards
name: Cosine
learning_rate: 1.25e-4
eta_min: 1.25e-6
learning_rate: 2.5e-4
eta_min: 2.5e-6
warmup_epoch: 20
warmup_start_lr: 1.25e-7
warmup_start_lr: 2.5e-7
# data loader for train and eval

View File

@ -42,11 +42,12 @@ Optimizer:
no_weight_decay_name: pos_embed cls_token .bias norm
one_dim_param_no_weight_decay: True
lr:
# for 8 cards
name: Cosine
learning_rate: 6.25e-5
eta_min: 6.25e-7
learning_rate: 1.25e-4
eta_min: 1.25e-6
warmup_epoch: 20
warmup_start_lr: 6.25e-8
warmup_start_lr: 1.25e-7
# data loader for train and eval

View File

@ -42,11 +42,12 @@ Optimizer:
no_weight_decay_name: pos_embed cls_token .bias norm
one_dim_param_no_weight_decay: True
lr:
# for 8 cards
name: Cosine
learning_rate: 1.25e-4
eta_min: 1.25e-6
learning_rate: 2.5e-4
eta_min: 2.5e-6
warmup_epoch: 20
warmup_start_lr: 1.25e-7
warmup_start_lr: 2.5e-7
# data loader for train and eval

View File

@ -42,11 +42,12 @@ Optimizer:
no_weight_decay_name: pos_embed cls_token .bias norm
one_dim_param_no_weight_decay: True
lr:
# for 8 cards
name: Cosine
learning_rate: 3.125e-5
eta_min: 3.125e-7
learning_rate: 6.25e-5
eta_min: 6.25e-7
warmup_epoch: 20
warmup_start_lr: 3.125e-8
warmup_start_lr: 6.25e-8
# data loader for train and eval

View File

@ -42,11 +42,12 @@ Optimizer:
no_weight_decay_name: pos_embed cls_token .bias norm
one_dim_param_no_weight_decay: True
lr:
# for 8 cards
name: Cosine
learning_rate: 2.5e-4
eta_min: 2.5e-6
learning_rate: 5e-4
eta_min: 5e-6
warmup_epoch: 20
warmup_start_lr: 2.5e-7
warmup_start_lr: 5e-7
# data loader for train and eval

View File

@ -42,11 +42,12 @@ Optimizer:
no_weight_decay_name: pos_embed cls_token .bias norm
one_dim_param_no_weight_decay: True
lr:
# for 8 cards
name: Cosine
learning_rate: 5e-4
eta_min: 5e-6
learning_rate: 1e-3
eta_min: 1e-5
warmup_epoch: 20
warmup_start_lr: 5e-7
warmup_start_lr: 1e-6
# data loader for train and eval

View File

@ -40,11 +40,12 @@ Optimizer:
no_weight_decay_name: norm cls_token pos_embed dist_token
one_dim_param_no_weight_decay: True
lr:
# for 8 cards
name: Cosine
learning_rate: 1e-3
eta_min: 1e-5
learning_rate: 2e-3
eta_min: 2e-5
warmup_epoch: 5
warmup_start_lr: 1e-6
warmup_start_lr: 2e-6
# data loader for train and eval
DataLoader:

View File

@ -40,11 +40,12 @@ Optimizer:
no_weight_decay_name: norm cls_token pos_embed dist_token
one_dim_param_no_weight_decay: True
lr:
# for 8 cards
name: Cosine
learning_rate: 1e-3
eta_min: 1e-5
learning_rate: 2e-3
eta_min: 2e-5
warmup_epoch: 5
warmup_start_lr: 1e-6
warmup_start_lr: 2e-6
# data loader for train and eval
DataLoader:

View File

@ -40,11 +40,12 @@ Optimizer:
no_weight_decay_name: norm cls_token pos_embed dist_token
one_dim_param_no_weight_decay: True
lr:
# for 8 cards
name: Cosine
learning_rate: 1e-3
eta_min: 1e-5
learning_rate: 2e-3
eta_min: 2e-5
warmup_epoch: 5
warmup_start_lr: 1e-6
warmup_start_lr: 2e-6
# data loader for train and eval
DataLoader:

View File

@ -40,11 +40,12 @@ Optimizer:
no_weight_decay_name: norm cls_token pos_embed dist_token
one_dim_param_no_weight_decay: True
lr:
# for 8 cards
name: Cosine
learning_rate: 1e-3
eta_min: 1e-5
learning_rate: 2e-3
eta_min: 2e-5
warmup_epoch: 5
warmup_start_lr: 1e-6
warmup_start_lr: 2e-6
# data loader for train and eval
DataLoader:

View File

@ -41,10 +41,10 @@ Optimizer:
one_dim_param_no_weight_decay: True
lr:
name: Cosine
learning_rate: 1e-3
eta_min: 1e-5
learning_rate: 2e-3
eta_min: 2e-5
warmup_epoch: 5
warmup_start_lr: 1e-6
warmup_start_lr: 2e-6
# data loader for train and eval
DataLoader:

View File

@ -40,11 +40,12 @@ Optimizer:
no_weight_decay_name: norm cls_token pos_embed dist_token
one_dim_param_no_weight_decay: True
lr:
# for 8 cards
name: Cosine
learning_rate: 1e-3
eta_min: 1e-5
learning_rate: 2e-3
eta_min: 2e-5
warmup_epoch: 5
warmup_start_lr: 1e-6
warmup_start_lr: 2e-6
# data loader for train and eval
DataLoader:

View File

@ -40,11 +40,12 @@ Optimizer:
no_weight_decay_name: norm cls_token pos_embed dist_token
one_dim_param_no_weight_decay: True
lr:
# for 8 cards
name: Cosine
learning_rate: 1e-3
eta_min: 1e-5
learning_rate: 2e-3
eta_min: 2e-5
warmup_epoch: 5
warmup_start_lr: 1e-6
warmup_start_lr: 2e-6
# data loader for train and eval
DataLoader:

View File

@ -40,11 +40,12 @@ Optimizer:
no_weight_decay_name: norm cls_token pos_embed dist_token
one_dim_param_no_weight_decay: True
lr:
# for 8 cards
name: Cosine
learning_rate: 1e-3
eta_min: 1e-5
learning_rate: 2e-3
eta_min: 2e-5
warmup_epoch: 5
warmup_start_lr: 1e-6
warmup_start_lr: 2e-6
# data loader for train and eval
DataLoader:

View File

@ -49,9 +49,8 @@ Loss:
model_name_pairs:
- ["Student", "Teacher"]
Eval:
- DistillationGTCELoss:
- CELoss:
weight: 1.0
model_names: ["Student"]
Optimizer:

View File

@ -88,10 +88,8 @@ Loss:
s_shapes: *s_shapes
t_shapes: *t_shapes
Eval:
- DistillationGTCELoss:
- CELoss:
weight: 1.0
model_names: ["Student"]
Optimizer:
name: Momentum

View File

@ -43,11 +43,12 @@ Optimizer:
no_weight_decay_name: pos_embed1 pos_embed2 pos_embed3 pos_embed4 cls_token
one_dim_param_no_weight_decay: True
lr:
# for 8 cards
name: Cosine
learning_rate: 5e-4
eta_min: 5e-6
learning_rate: 1e-3
eta_min: 1e-5
warmup_epoch: 20
warmup_start_lr: 5e-7
warmup_start_lr: 1e-6
# data loader for train and eval

View File

@ -43,11 +43,12 @@ Optimizer:
no_weight_decay_name: pos_embed1 pos_embed2 pos_embed3 pos_embed4 cls_token
one_dim_param_no_weight_decay: True
lr:
# for 8 cards
name: Cosine
learning_rate: 5e-4
eta_min: 5e-6
learning_rate: 1e-3
eta_min: 1e-5
warmup_epoch: 20
warmup_start_lr: 5e-7
warmup_start_lr: 1e-6
# data loader for train and eval

View File

@ -43,11 +43,12 @@ Optimizer:
no_weight_decay_name: pos_embed1 pos_embed2 pos_embed3 pos_embed4 cls_token
one_dim_param_no_weight_decay: True
lr:
# for 8 cards
name: Cosine
learning_rate: 5e-4
eta_min: 5e-6
learning_rate: 1e-3
eta_min: 1e-5
warmup_epoch: 20
warmup_start_lr: 5e-7
warmup_start_lr: 1e-6
# data loader for train and eval

View File

@ -43,11 +43,12 @@ Optimizer:
no_weight_decay_name: pos_embed1 pos_embed2 pos_embed3 pos_embed4 cls_token
one_dim_param_no_weight_decay: True
lr:
# for 8 cards
name: Cosine
learning_rate: 5e-4
eta_min: 5e-6
learning_rate: 1e-3
eta_min: 1e-5
warmup_epoch: 20
warmup_start_lr: 5e-7
warmup_start_lr: 1e-6
# data loader for train and eval

View File

@ -44,11 +44,12 @@ Optimizer:
no_weight_decay_name: pos_embed1 pos_embed2 pos_embed3 pos_embed4 cls_token
one_dim_param_no_weight_decay: True
lr:
# for 8 cards
name: Cosine
learning_rate: 5e-4
eta_min: 5e-6
learning_rate: 1e-3
eta_min: 1e-5
warmup_epoch: 20
warmup_start_lr: 5e-7
warmup_start_lr: 1e-6
# data loader for train and eval

View File

@ -44,11 +44,12 @@ Optimizer:
no_weight_decay_name: pos_embed1 pos_embed2 pos_embed3 pos_embed4 cls_token
one_dim_param_no_weight_decay: True
lr:
# for 8 cards
name: Cosine
learning_rate: 5e-4
eta_min: 5e-6
learning_rate: 1e-3
eta_min: 1e-5
warmup_epoch: 20
warmup_start_lr: 5e-7
warmup_start_lr: 1e-6
# data loader for train and eval

View File

@ -44,11 +44,12 @@ Optimizer:
no_weight_decay_name: pos_embed1 pos_embed2 pos_embed3 pos_embed4 cls_token
one_dim_param_no_weight_decay: True
lr:
# for 8 cards
name: Cosine
learning_rate: 5e-4
eta_min: 5e-6
learning_rate: 1e-3
eta_min: 1e-5
warmup_epoch: 20
warmup_start_lr: 5e-7
warmup_start_lr: 1e-6
# data loader for train and eval

View File

@ -41,11 +41,12 @@ Optimizer:
no_weight_decay_name: absolute_pos_embed relative_position_bias_table .bias norm
one_dim_param_no_weight_decay: True
lr:
# for 8 cards
name: Cosine
learning_rate: 5e-4
eta_min: 1e-5
learning_rate: 1e-3
eta_min: 2e-5
warmup_epoch: 20
warmup_start_lr: 1e-6
warmup_start_lr: 2e-6
# data loader for train and eval

View File

@ -41,11 +41,12 @@ Optimizer:
no_weight_decay_name: absolute_pos_embed relative_position_bias_table .bias norm
one_dim_param_no_weight_decay: True
lr:
# for 8 cards
name: Cosine
learning_rate: 5e-4
eta_min: 1e-5
learning_rate: 1e-3
eta_min: 2e-5
warmup_epoch: 20
warmup_start_lr: 1e-6
warmup_start_lr: 2e-6
# data loader for train and eval

View File

@ -41,11 +41,12 @@ Optimizer:
no_weight_decay_name: absolute_pos_embed relative_position_bias_table .bias norm
one_dim_param_no_weight_decay: True
lr:
# for 8 cards
name: Cosine
learning_rate: 5e-4
eta_min: 1e-5
learning_rate: 1e-3
eta_min: 2e-5
warmup_epoch: 20
warmup_start_lr: 1e-6
warmup_start_lr: 2e-6
# data loader for train and eval

View File

@ -41,11 +41,12 @@ Optimizer:
no_weight_decay_name: absolute_pos_embed relative_position_bias_table .bias norm
one_dim_param_no_weight_decay: True
lr:
# for 8 cards
name: Cosine
learning_rate: 5e-4
eta_min: 1e-5
learning_rate: 1e-3
eta_min: 2e-5
warmup_epoch: 20
warmup_start_lr: 1e-6
warmup_start_lr: 2e-6
# data loader for train and eval

View File

@ -41,11 +41,12 @@ Optimizer:
no_weight_decay_name: absolute_pos_embed relative_position_bias_table .bias norm
one_dim_param_no_weight_decay: True
lr:
# for 8 cards
name: Cosine
learning_rate: 5e-4
eta_min: 1e-5
learning_rate: 1e-3
eta_min: 2e-5
warmup_epoch: 20
warmup_start_lr: 1e-6
warmup_start_lr: 2e-6
# data loader for train and eval

View File

@ -41,11 +41,12 @@ Optimizer:
no_weight_decay_name: absolute_pos_embed relative_position_bias_table .bias norm
one_dim_param_no_weight_decay: True
lr:
# for 8 cards
name: Cosine
learning_rate: 5e-4
eta_min: 1e-5
learning_rate: 1e-3
eta_min: 2e-5
warmup_epoch: 20
warmup_start_lr: 1e-6
warmup_start_lr: 2e-6
# data loader for train and eval

View File

@ -43,11 +43,12 @@ Optimizer:
no_weight_decay_name: norm cls_token proj.0.weight proj.1.weight proj.2.weight proj.3.weight pos_block
one_dim_param_no_weight_decay: True
lr:
# for 8 cards
name: Cosine
learning_rate: 5e-4
eta_min: 1e-5
learning_rate: 1e-3
eta_min: 2e-5
warmup_epoch: 5
warmup_start_lr: 1e-6
warmup_start_lr: 2e-6
# data loader for train and eval

View File

@ -43,11 +43,12 @@ Optimizer:
no_weight_decay_name: norm cls_token proj.0.weight proj.1.weight proj.2.weight proj.3.weight pos_block
one_dim_param_no_weight_decay: True
lr:
# for 8 cards
name: Cosine
learning_rate: 5e-4
eta_min: 1e-5
learning_rate: 1e-3
eta_min: 2e-5
warmup_epoch: 5
warmup_start_lr: 1e-6
warmup_start_lr: 2e-6
# data loader for train and eval

View File

@ -43,11 +43,12 @@ Optimizer:
no_weight_decay_name: norm cls_token proj.0.weight proj.1.weight proj.2.weight proj.3.weight pos_block
one_dim_param_no_weight_decay: True
lr:
# for 8 cards
name: Cosine
learning_rate: 5e-4
eta_min: 1e-5
learning_rate: 1e-3
eta_min: 2e-5
warmup_epoch: 5
warmup_start_lr: 1e-6
warmup_start_lr: 2e-6
# data loader for train and eval

View File

@ -43,11 +43,12 @@ Optimizer:
no_weight_decay_name: norm cls_token proj.0.weight proj.1.weight proj.2.weight proj.3.weight pos_block
one_dim_param_no_weight_decay: True
lr:
# for 8 cards
name: Cosine
learning_rate: 5e-4
eta_min: 1e-5
learning_rate: 1e-3
eta_min: 2e-5
warmup_epoch: 5
warmup_start_lr: 1e-6
warmup_start_lr: 2e-6
# data loader for train and eval

View File

@ -43,11 +43,12 @@ Optimizer:
no_weight_decay_name: norm cls_token proj.0.weight proj.1.weight proj.2.weight proj.3.weight pos_block
one_dim_param_no_weight_decay: True
lr:
# for 8 cards
name: Cosine
learning_rate: 5e-4
eta_min: 1e-5
learning_rate: 1e-3
eta_min: 2e-5
warmup_epoch: 5
warmup_start_lr: 1e-6
warmup_start_lr: 2e-6
# data loader for train and eval

View File

@ -43,11 +43,12 @@ Optimizer:
no_weight_decay_name: norm cls_token proj.0.weight proj.1.weight proj.2.weight proj.3.weight pos_block
one_dim_param_no_weight_decay: True
lr:
# for 8 cards
name: Cosine
learning_rate: 5e-4
eta_min: 1e-5
learning_rate: 1e-3
eta_min: 2e-5
warmup_epoch: 5
warmup_start_lr: 1e-6
warmup_start_lr: 2e-6
# data loader for train and eval

View File

@ -98,8 +98,8 @@ class Engine(object):
logger.info('train with paddle {} and device {}'.format(
paddle.__version__, self.device))
# AMP training
self.amp = True if "AMP" in self.config and self.mode == "train" else False
# AMP training and evaluating
self.amp = "AMP" in self.config
if self.amp and self.config["AMP"] is not None:
self.scale_loss = self.config["AMP"].get("scale_loss", 1.0)
self.use_dynamic_loss_scaling = self.config["AMP"].get(
@ -250,12 +250,17 @@ class Engine(object):
level=amp_level,
save_dtype='float32')
# for distributed
# check the gpu num
world_size = dist.get_world_size()
self.config["Global"]["distributed"] = world_size != 1
if world_size != 4 and self.mode == "train":
msg = f"The training strategy in config files provided by PaddleClas is based on 4 gpus. But the number of gpus is {world_size} in current training. Please modify the stategy (learning rate, batch size and so on) if use config files in PaddleClas to train."
logger.warning(msg)
if self.mode == "train":
std_gpu_num = 8 if self.config["Optimizer"][
"name"] == "AdamW" else 4
if world_size != std_gpu_num:
msg = f"The training strategy provided by PaddleClas is based on {std_gpu_num} gpus. But the number of gpu is {world_size} in current training. Please modify the stategy (learning rate, batch size and so on) if use this config to train."
logger.warning(msg)
# for distributed
if self.config["Global"]["distributed"]:
dist.init_parallel_env()
self.model = paddle.DataParallel(self.model)

View File

@ -73,68 +73,66 @@ def classification_eval(engine, epoch_id=0):
},
level=amp_level):
out = engine.model(batch[0])
# calc loss
if engine.eval_loss_func is not None:
loss_dict = engine.eval_loss_func(out, batch[1])
for key in loss_dict:
if key not in output_info:
output_info[key] = AverageMeter(key, '7.5f')
output_info[key].update(loss_dict[key].numpy()[0],
batch_size)
else:
out = engine.model(batch[0])
# calc loss
if engine.eval_loss_func is not None:
loss_dict = engine.eval_loss_func(out, batch[1])
for key in loss_dict:
if key not in output_info:
output_info[key] = AverageMeter(key, '7.5f')
output_info[key].update(loss_dict[key].numpy()[0],
batch_size)
# just for DistributedBatchSampler issue: repeat sampling
current_samples = batch_size * paddle.distributed.get_world_size()
accum_samples += current_samples
# calc metric
if engine.eval_metric_func is not None:
if paddle.distributed.get_world_size() > 1:
label_list = []
paddle.distributed.all_gather(label_list, batch[1])
labels = paddle.concat(label_list, 0)
if isinstance(out, dict) and "Student" in out:
out = out["Student"]
if isinstance(out, dict) and "logits" in out:
out = out["logits"]
if isinstance(out, dict):
if "Student" in out:
out = out["Student"]
if isinstance(out, dict):
out = out["logits"]
elif "logits" in out:
out = out["logits"]
else:
msg = "Error: Wrong key in out!"
raise Exception(msg)
if isinstance(out, list):
pred = []
for x in out:
pred_list = []
paddle.distributed.all_gather(pred_list, x)
pred_x = paddle.concat(pred_list, 0)
pred.append(pred_x)
else:
# gather Tensor when distributed
if paddle.distributed.get_world_size() > 1:
label_list = []
paddle.distributed.all_gather(label_list, batch[1])
labels = paddle.concat(label_list, 0)
if isinstance(out, list):
preds = []
for x in out:
pred_list = []
paddle.distributed.all_gather(pred_list, out)
pred = paddle.concat(pred_list, 0)
if accum_samples > total_samples and not engine.use_dali:
pred = pred[:total_samples + current_samples -
accum_samples]
labels = labels[:total_samples + current_samples -
accum_samples]
current_samples = total_samples + current_samples - accum_samples
metric_dict = engine.eval_metric_func(pred, labels)
paddle.distributed.all_gather(pred_list, x)
pred_x = paddle.concat(pred_list, 0)
preds.append(pred_x)
else:
metric_dict = engine.eval_metric_func(out, batch[1])
pred_list = []
paddle.distributed.all_gather(pred_list, out)
preds = paddle.concat(pred_list, 0)
if accum_samples > total_samples and not engine.use_dali:
preds = preds[:total_samples + current_samples - accum_samples]
labels = labels[:total_samples + current_samples -
accum_samples]
current_samples = total_samples + current_samples - accum_samples
else:
labels = batch[1]
preds = out
# calc loss
if engine.eval_loss_func is not None:
if engine.amp and engine.config["AMP"].get("use_fp16_test", False):
amp_level = engine.config['AMP'].get("level", "O1").upper()
with paddle.amp.auto_cast(
custom_black_list={
"flatten_contiguous_range", "greater_than"
},
level=amp_level):
loss_dict = engine.eval_loss_func(preds, labels)
else:
loss_dict = engine.eval_loss_func(preds, labels)
for key in loss_dict:
if key not in output_info:
output_info[key] = AverageMeter(key, '7.5f')
output_info[key].update(loss_dict[key].numpy()[0],
current_samples)
# calc metric
if engine.eval_metric_func is not None:
metric_dict = engine.eval_metric_func(preds, labels)
for key in metric_dict:
if metric_key is None:
metric_key = key

View File

@ -259,10 +259,8 @@ def eval_func(distmat, q_pids, g_pids, q_camids, g_camids, max_rank=50):
def cal_feature(engine, name='gallery'):
all_feas = None
all_image_id = None
all_unique_id = None
has_unique_id = False
all_unique_id = None
if name == 'gallery':
dataloader = engine.gallery_dataloader
@ -273,6 +271,9 @@ def cal_feature(engine, name='gallery'):
else:
raise RuntimeError("Only support gallery or query dataset")
batch_feas_list = []
img_id_list = []
unique_id_list = []
max_iter = len(dataloader) - 1 if platform.system() == "Windows" else len(
dataloader)
for idx, batch in enumerate(dataloader): # load is very time-consuming
@ -317,32 +318,39 @@ def cal_feature(engine, name='gallery'):
if engine.config["Global"].get("feature_binarize") == "sign":
batch_feas = paddle.sign(batch_feas).astype("float32")
if all_feas is None:
all_feas = batch_feas
if paddle.distributed.get_world_size() > 1:
batch_feas_gather = []
img_id_gather = []
unique_id_gather = []
paddle.distributed.all_gather(batch_feas_gather, batch_feas)
paddle.distributed.all_gather(img_id_gather, batch[1])
batch_feas_list.append(paddle.concat(batch_feas_gather))
img_id_list.append(paddle.concat(img_id_gather))
if has_unique_id:
all_unique_id = batch[2]
all_image_id = batch[1]
paddle.distributed.all_gather(unique_id_gather, batch[2])
unique_id_list.append(paddle.concat(unique_id_gather))
else:
all_feas = paddle.concat([all_feas, batch_feas])
all_image_id = paddle.concat([all_image_id, batch[1]])
batch_feas_list.append(batch_feas)
img_id_list.append(batch[1])
if has_unique_id:
all_unique_id = paddle.concat([all_unique_id, batch[2]])
unique_id_list.append(batch[2])
if engine.use_dali:
dataloader.reset()
if paddle.distributed.get_world_size() > 1:
feat_list = []
img_id_list = []
unique_id_list = []
paddle.distributed.all_gather(feat_list, all_feas)
paddle.distributed.all_gather(img_id_list, all_image_id)
all_feas = paddle.concat(feat_list, axis=0)
all_image_id = paddle.concat(img_id_list, axis=0)
if has_unique_id:
paddle.distributed.all_gather(unique_id_list, all_unique_id)
all_unique_id = paddle.concat(unique_id_list, axis=0)
all_feas = paddle.concat(batch_feas_list)
all_img_id = paddle.concat(img_id_list)
if has_unique_id:
all_unique_id = paddle.concat(unique_id_list)
# just for DistributedBatchSampler issue: repeat sampling
total_samples = len(
dataloader.dataset) if not engine.use_dali else dataloader.size
all_feas = all_feas[:total_samples]
all_img_id = all_img_id[:total_samples]
if has_unique_id:
all_unique_id = all_unique_id[:total_samples]
logger.info("Build {} done, all feat shape: {}, begin to eval..".format(
name, all_feas.shape))
return all_feas, all_image_id, all_unique_id
return all_feas, all_img_id, all_unique_id

View File

@ -20,6 +20,7 @@ class DSHSDLoss(nn.Layer):
"""
# DSHSD(IEEE ACCESS 2019)
# paper [Deep Supervised Hashing Based on Stable Distribution](https://ieeexplore.ieee.org/document/8648432/)
# code reference: https://github.com/swuxyj/DeepHash-pytorch/blob/master/DSHSD.py
"""
def __init__(self, alpha, multi_label=False):
@ -62,6 +63,7 @@ class DSHSDLoss(nn.Layer):
class LCDSHLoss(nn.Layer):
"""
# paper [Locality-Constrained Deep Supervised Hashing for Image Retrieval](https://www.ijcai.org/Proceedings/2017/0499.pdf)
# code reference: https://github.com/swuxyj/DeepHash-pytorch/blob/master/LCDSH.py
"""
def __init__(self, n_class, _lambda):
@ -100,6 +102,7 @@ class DCHLoss(paddle.nn.Layer):
"""
# paper [Deep Cauchy Hashing for Hamming Space Retrieval]
URL:(http://ise.thss.tsinghua.edu.cn/~mlong/doc/deep-cauchy-hashing-cvpr18.pdf)
# code reference: https://github.com/swuxyj/DeepHash-pytorch/blob/master/DCH.py
"""
def __init__(self, gamma, _lambda, n_class):

View File

@ -23,6 +23,11 @@ from .comfunc import rerange_index
class EmlLoss(paddle.nn.Layer):
"""Ensemble Metric Learning Loss
paper: [Large Scale Strongly Supervised Ensemble Metric Learning, with Applications to Face Verification and Retrieval](https://arxiv.org/pdf/1212.6094.pdf)
code reference: https://github.com/PaddlePaddle/models/blob/develop/PaddleCV/metric_learning/losses/emlloss.py
"""
def __init__(self, batch_size=40, samples_each_class=2):
super(EmlLoss, self).__init__()
assert (batch_size % samples_each_class == 0)

View File

@ -18,11 +18,13 @@ import paddle.nn.functional as F
class GoogLeNetLoss(nn.Layer):
"""
Cross entropy loss used after googlenet
reference paper: [https://arxiv.org/pdf/1409.4842v1.pdf](Going Deeper with Convolutions)
"""
def __init__(self, epsilon=None):
super().__init__()
assert (epsilon is None or epsilon <= 0 or epsilon >= 1), "googlenet is not support label_smooth"
assert (epsilon is None or epsilon <= 0 or
epsilon >= 1), "googlenet is not support label_smooth"
def forward(self, inputs, label):
input0, input1, input2 = inputs

View File

@ -21,10 +21,12 @@ from .comfunc import rerange_index
class MSMLoss(paddle.nn.Layer):
"""
MSMLoss Loss, based on triplet loss. USE P * K samples.
paper : [Margin Sample Mining Loss: A Deep Learning Based Method for Person Re-identification](https://arxiv.org/pdf/1710.00478.pdf)
code reference: https://github.com/michuanhaohao/keras_reid/blob/master/reid_tripletcls.py
Margin Sample Mining Loss, based on triplet loss. USE P * K samples.
the batch size is fixed. Batch_size = P * K; but the K may vary between batches.
same label gather together
supported_metrics = [
'euclidean',
'sqeuclidean',
@ -41,7 +43,7 @@ class MSMLoss(paddle.nn.Layer):
self.rerange_index = rerange_index(batch_size, samples_each_class)
def forward(self, input, target=None):
#normalization
#normalization
features = input["features"]
features = self._nomalize(features)
samples_each_class = self.samples_each_class
@ -53,7 +55,7 @@ class MSMLoss(paddle.nn.Layer):
features, axis=0)
similary_matrix = paddle.sum(paddle.square(diffs), axis=-1)
#rerange
#rerange
tmp = paddle.reshape(similary_matrix, shape=[-1, 1])
tmp = paddle.gather(tmp, index=rerange_index)
similary_matrix = paddle.reshape(tmp, shape=[-1, self.batch_size])

View File

@ -5,6 +5,11 @@ import paddle
class NpairsLoss(paddle.nn.Layer):
"""Npair_loss_
paper [Improved deep metric learning with multi-class N-pair loss objective](https://dl.acm.org/doi/10.5555/3157096.3157304)
code reference: https://www.tensorflow.org/versions/r1.15/api_docs/python/tf/contrib/losses/metric_learning/npairs_loss
"""
def __init__(self, reg_lambda=0.01):
super(NpairsLoss, self).__init__()
self.reg_lambda = reg_lambda

View File

@ -23,6 +23,11 @@ import paddle.nn.functional as F
class PairwiseCosface(nn.Layer):
"""
paper: Circle Loss: A Unified Perspective of Pair Similarity Optimization
code reference: https://github.com/leoluopy/circle-loss-demonstration/blob/main/circle_loss.py
"""
def __init__(self, margin, gamma):
super(PairwiseCosface, self).__init__()
self.margin = margin
@ -36,8 +41,10 @@ class PairwiseCosface(nn.Layer):
dist_mat = paddle.matmul(embedding, embedding, transpose_y=True)
N = dist_mat.shape[0]
is_pos = targets.reshape([N,1]).expand([N,N]).equal(paddle.t(targets.reshape([N,1]).expand([N,N]))).astype('float')
is_neg = targets.reshape([N,1]).expand([N,N]).not_equal(paddle.t(targets.reshape([N,1]).expand([N,N]))).astype('float')
is_pos = targets.reshape([N, 1]).expand([N, N]).equal(
paddle.t(targets.reshape([N, 1]).expand([N, N]))).astype('float')
is_neg = targets.reshape([N, 1]).expand([N, N]).not_equal(
paddle.t(targets.reshape([N, 1]).expand([N, N]))).astype('float')
# Mask scores related to itself
is_pos = is_pos - paddle.eye(N, N)
@ -46,10 +53,12 @@ class PairwiseCosface(nn.Layer):
s_n = dist_mat * is_neg
logit_p = -self.gamma * s_p + (-99999999.) * (1 - is_pos)
logit_n = self.gamma * (s_n + self.margin) + (-99999999.) * (1 - is_neg)
logit_n = self.gamma * (s_n + self.margin) + (-99999999.) * (1 - is_neg
)
loss = F.softplus(
paddle.logsumexp(
logit_p, axis=1) + paddle.logsumexp(
logit_n, axis=1)).mean()
loss = F.softplus(paddle.logsumexp(logit_p, axis=1) + paddle.logsumexp(logit_n, axis=1)).mean()
return {"PairwiseCosface": loss}

View File

@ -29,6 +29,7 @@ def pdist(e, squared=False, eps=1e-12):
class RKdAngle(nn.Layer):
# paper : [Relational Knowledge Distillation](https://arxiv.org/abs/1904.05068?context=cs.LG)
# reference: https://github.com/lenscloth/RKD/blob/master/metric/loss.py
def __init__(self, target_size=None):
super().__init__()
@ -64,6 +65,7 @@ class RKdAngle(nn.Layer):
class RkdDistance(nn.Layer):
# paper : [Relational Knowledge Distillation](https://arxiv.org/abs/1904.05068?context=cs.LG)
# reference: https://github.com/lenscloth/RKD/blob/master/metric/loss.py
def __init__(self, eps=1e-12, target_size=1):
super().__init__()

View File

@ -4,6 +4,7 @@ from paddle import nn
class SupConLoss(nn.Layer):
"""Supervised Contrastive Learning: https://arxiv.org/pdf/2004.11362.pdf.
code reference: https://github.com/HobbitLong/SupContrast/blob/master/losses.py
It also supports the unsupervised contrastive loss in SimCLR"""
def __init__(self,

View File

@ -22,10 +22,12 @@ from .comfunc import rerange_index
class TriHardLoss(paddle.nn.Layer):
"""
paper: In Defense of the Triplet Loss for Person Re-Identification
code reference: https://github.com/VisualComputingInstitute/triplet-reid/blob/master/loss.py
TriHard Loss, based on triplet loss. USE P * K samples.
the batch size is fixed. Batch_size = P * K; but the K may vary between batches.
same label gather together
supported_metrics = [
'euclidean',
'sqeuclidean',
@ -45,7 +47,7 @@ class TriHardLoss(paddle.nn.Layer):
features = input["features"]
assert (self.batch_size == features.shape[0])
#normalization
#normalization
features = self._nomalize(features)
samples_each_class = self.samples_each_class
rerange_index = paddle.to_tensor(self.rerange_index)
@ -56,7 +58,7 @@ class TriHardLoss(paddle.nn.Layer):
features, axis=0)
similary_matrix = paddle.sum(paddle.square(diffs), axis=-1)
#rerange
#rerange
tmp = paddle.reshape(similary_matrix, shape=[-1, 1])
tmp = paddle.gather(tmp, index=rerange_index)
similary_matrix = paddle.reshape(tmp, shape=[-1, self.batch_size])

View File

@ -1,10 +1,10 @@
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
@ -22,6 +22,8 @@ import paddle.nn as nn
class TripletLossV2(nn.Layer):
"""Triplet loss with hard positive/negative mining.
paper : [Facenet: A unified embedding for face recognition and clustering](https://arxiv.org/pdf/1503.03832.pdf)
code reference: https://github.com/okzhili/Cartoon-face-recognition/blob/master/loss/triplet_loss.py
Args:
margin (float): margin for triplet.
"""

View File

@ -120,8 +120,6 @@ def build_optimizer(config, epochs, step_each_epoch, model_list=None):
elif hasattr(model_list[i], optim_scope):
optim_model.append(getattr(model_list[i], optim_scope))
assert len(optim_model) == 1, \
"Invalid optim model for optim scope({}), number of optim_model={}".format(optim_scope, len(optim_model))
optim = getattr(optimizer, optim_name)(
learning_rate=lr, grad_clip=grad_clip,
**optim_cfg)(model_list=optim_model)

View File

@ -13,14 +13,14 @@ train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/CSWinTransformer/CSWinTransformer_tiny_224.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
norm_train:tools/train.py -c ppcls/configs/ImageNet/CSWinTransformer/CSWinTransformer_tiny_224.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.print_batch_step=1
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/CSWinTransformer/CSWinTransformer_tiny_224.yaml
null:null
##

View File

@ -13,14 +13,14 @@ train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileViT/MobileViT_S.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
norm_train:tools/train.py -c ppcls/configs/ImageNet/MobileViT/MobileViT_S.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.print_batch_step=1
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
===========================eval_params===========================
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileViT/MobileViT_S.yaml
null:null
##

View File

@ -13,7 +13,7 @@ train_infer_img_dir:./dataset/ILSVRC2012/val
null:null
##
trainer:norm_train
norm_train:tools/train.py -c ppcls/configs/ImageNet/PVTV2/PVT_V2_B2_Linear.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False
norm_train:tools/train.py -c ppcls/configs/ImageNet/PVTV2/PVT_V2_B2_Linear.yaml -o Global.seed=1234 -o DataLoader.Train.sampler.shuffle=False -o DataLoader.Train.loader.num_workers=0 -o DataLoader.Train.loader.use_shared_memory=False -o Global.print_batch_step=1
pact_train:null
fpgm_train:null
distill_train:null

View File

@ -1,7 +1,7 @@
#!/bin/bash
FILENAME=$1
# MODE be one of ['lite_train_lite_infer' 'lite_train_whole_infer' 'whole_train_whole_infer',
# MODE be one of ['lite_train_lite_infer' 'lite_train_whole_infer' 'whole_train_whole_infer',
# 'whole_infer', 'klquant_whole_infer',
# 'cpp_infer', 'serving_infer', 'lite_infer']
@ -67,9 +67,9 @@ if [ ${MODE} = "cpp_infer" ];then
model_dir=${tar_name%.*}
eval "tar xf ${tar_name}"
eval "mv ${model_dir} ${cls_inference_model_dir}"
eval "wget -nc $det_inference_url"
tar_name=$(func_get_url_file_name "$det_inference_url")
tar_name=$(func_get_url_file_name "$det_inference_url")
model_dir=${tar_name%.*}
eval "tar xf ${tar_name}"
eval "mv ${model_dir} ${det_inference_model_dir}"
@ -120,7 +120,7 @@ if [ ${MODE} = "lite_train_lite_infer" ] || [ ${MODE} = "lite_train_whole_infer"
wget -nc https://paddle-imagenet-models-name.bj.bcebos.com/data/whole_chain/whole_chain_little_train.tar
tar xf whole_chain_little_train.tar
ln -s whole_chain_little_train ILSVRC2012
cd ILSVRC2012
cd ILSVRC2012
mv train.txt train_list.txt
mv val.txt val_list.txt
cp -r train/* val/
@ -132,7 +132,7 @@ elif [ ${MODE} = "whole_infer" ] || [ ${MODE} = "klquant_whole_infer" ];then
wget -nc https://paddle-imagenet-models-name.bj.bcebos.com/data/whole_chain/whole_chain_infer.tar
tar xf whole_chain_infer.tar
ln -s whole_chain_infer ILSVRC2012
cd ILSVRC2012
cd ILSVRC2012
mv val.txt val_list.txt
ln -s val_list.txt train_list.txt
cd ../../
@ -153,7 +153,7 @@ elif [ ${MODE} = "whole_train_whole_infer" ];then
wget -nc https://paddle-imagenet-models-name.bj.bcebos.com/data/whole_chain/whole_chain_CIFAR100.tar
tar xf whole_chain_CIFAR100.tar
ln -s whole_chain_CIFAR100 ILSVRC2012
cd ILSVRC2012
cd ILSVRC2012
mv train.txt train_list.txt
mv test.txt val_list.txt
cd ../../