add model list
parent
419defade4
commit
0bed4f4d03
|
@ -12,6 +12,7 @@ ResNet101_vd
|
|||
ResNet152_vd
|
||||
ResNet200_vd
|
||||
ResNet50_vd_ssld
|
||||
ResNet101_vd_ssld
|
||||
MobileNetV3_large_x0_35
|
||||
MobileNetV3_large_x0_5
|
||||
MobileNetV3_large_x0_75
|
||||
|
|
|
@ -2,7 +2,26 @@
|
|||
|
||||
## 概述
|
||||
|
||||
基于ImageNet1k分类数据集,PaddleClas支持的23种系列分类网络结构以及对应的117个图像分类预训练模型如下所示,训练技巧、每个系列网络结构的简单介绍和性能评估将在相应章节展现。GPU评估环境基于V100和TensorRT,CPU的评估环境基于骁龙855(SD855)。
|
||||
基于ImageNet1k分类数据集,PaddleClas支持的23种系列分类网络结构以及对应的117个图像分类预训练模型如下所示,训练技巧、每个系列网络结构的简单介绍和性能评估将在相应章节展现。
|
||||
|
||||
## 评估环境
|
||||
* CPU的评估环境基于骁龙855(SD855)。
|
||||
* GPU评估环境基于V100和TensorRT,评估脚本如下。
|
||||
|
||||
```shell
|
||||
#!/usr/bin/env bash
|
||||
|
||||
export PYTHONPATH=$PWD:$PYTHONPATH
|
||||
|
||||
python tools/infer/predict.py \
|
||||
--model_file='pretrained/infer/model' \
|
||||
--params_file='pretrained/infer/params' \
|
||||
--enable_benchmark=True \
|
||||
--model_name=ResNet50_vd \
|
||||
--use_tensorrt=True \
|
||||
--use_fp16=False \
|
||||
--batch_size=1
|
||||
```
|
||||
|
||||

|
||||

|
||||
|
@ -25,6 +44,7 @@
|
|||
- [ResNet152_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet152_vd_pretrained.tar)
|
||||
- [ResNet200_vd](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet200_vd_pretrained.tar)
|
||||
- [ResNet50_vd_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_ssld_pretrained.tar)
|
||||
- [ResNet101_vd_ssld](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_ssld_pretrained.tar)
|
||||
|
||||
|
||||
- 移动端系列
|
||||
|
|
|
@ -109,11 +109,6 @@ def main():
|
|||
operators = create_operators()
|
||||
predictor = create_predictor(args)
|
||||
|
||||
inputs = preprocess(args.image_file, operators)
|
||||
inputs = np.expand_dims(
|
||||
inputs, axis=0).repeat(
|
||||
args.batch_size, axis=0).copy()
|
||||
|
||||
input_names = predictor.get_input_names()
|
||||
input_tensor = predictor.get_input_tensor(input_names[0])
|
||||
|
||||
|
|
Loading…
Reference in New Issue