fix static run for vit and deit (#605)
parent
ceeb605d9c
commit
0c35c4c794
|
@ -16,7 +16,6 @@ import paddle
|
|||
import paddle.nn as nn
|
||||
from .vision_transformer import VisionTransformer, Identity, trunc_normal_, zeros_
|
||||
|
||||
|
||||
__all__ = [
|
||||
'DeiT_tiny_patch16_224', 'DeiT_small_patch16_224', 'DeiT_base_patch16_224',
|
||||
'DeiT_tiny_distilled_patch16_224', 'DeiT_small_distilled_patch16_224',
|
||||
|
@ -26,14 +25,33 @@ __all__ = [
|
|||
|
||||
|
||||
class DistilledVisionTransformer(VisionTransformer):
|
||||
def __init__(self, img_size=224, patch_size=16, class_dim=1000, embed_dim=768, depth=12,
|
||||
num_heads=12, mlp_ratio=4, qkv_bias=False, norm_layer='nn.LayerNorm', epsilon=1e-5,
|
||||
def __init__(self,
|
||||
img_size=224,
|
||||
patch_size=16,
|
||||
class_dim=1000,
|
||||
embed_dim=768,
|
||||
depth=12,
|
||||
num_heads=12,
|
||||
mlp_ratio=4,
|
||||
qkv_bias=False,
|
||||
norm_layer='nn.LayerNorm',
|
||||
epsilon=1e-5,
|
||||
**kwargs):
|
||||
super().__init__(img_size=img_size, patch_size=patch_size, class_dim=class_dim, embed_dim=embed_dim, depth=depth,
|
||||
num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, norm_layer=norm_layer, epsilon=epsilon,
|
||||
**kwargs)
|
||||
super().__init__(
|
||||
img_size=img_size,
|
||||
patch_size=patch_size,
|
||||
class_dim=class_dim,
|
||||
embed_dim=embed_dim,
|
||||
depth=depth,
|
||||
num_heads=num_heads,
|
||||
mlp_ratio=mlp_ratio,
|
||||
qkv_bias=qkv_bias,
|
||||
norm_layer=norm_layer,
|
||||
epsilon=epsilon,
|
||||
**kwargs)
|
||||
self.pos_embed = self.create_parameter(
|
||||
shape=(1, self.patch_embed.num_patches + 2, self.embed_dim), default_initializer=zeros_)
|
||||
shape=(1, self.patch_embed.num_patches + 2, self.embed_dim),
|
||||
default_initializer=zeros_)
|
||||
self.add_parameter("pos_embed", self.pos_embed)
|
||||
|
||||
self.dist_token = self.create_parameter(
|
||||
|
@ -41,14 +59,15 @@ class DistilledVisionTransformer(VisionTransformer):
|
|||
self.add_parameter("cls_token", self.cls_token)
|
||||
|
||||
self.head_dist = nn.Linear(
|
||||
self.embed_dim, self.class_dim) if self.class_dim > 0 else Identity()
|
||||
self.embed_dim,
|
||||
self.class_dim) if self.class_dim > 0 else Identity()
|
||||
|
||||
trunc_normal_(self.dist_token)
|
||||
trunc_normal_(self.pos_embed)
|
||||
self.head_dist.apply(self._init_weights)
|
||||
|
||||
def forward_features(self, x):
|
||||
B = x.shape[0]
|
||||
B = paddle.shape(x)[0]
|
||||
x = self.patch_embed(x)
|
||||
|
||||
cls_tokens = self.cls_token.expand((B, -1, -1))
|
||||
|
@ -73,55 +92,105 @@ class DistilledVisionTransformer(VisionTransformer):
|
|||
|
||||
def DeiT_tiny_patch16_224(**kwargs):
|
||||
model = VisionTransformer(
|
||||
patch_size=16, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, qkv_bias=True,
|
||||
epsilon=1e-6, **kwargs)
|
||||
patch_size=16,
|
||||
embed_dim=192,
|
||||
depth=12,
|
||||
num_heads=3,
|
||||
mlp_ratio=4,
|
||||
qkv_bias=True,
|
||||
epsilon=1e-6,
|
||||
**kwargs)
|
||||
return model
|
||||
|
||||
|
||||
def DeiT_small_patch16_224(**kwargs):
|
||||
model = VisionTransformer(
|
||||
patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True,
|
||||
epsilon=1e-6, **kwargs)
|
||||
patch_size=16,
|
||||
embed_dim=384,
|
||||
depth=12,
|
||||
num_heads=6,
|
||||
mlp_ratio=4,
|
||||
qkv_bias=True,
|
||||
epsilon=1e-6,
|
||||
**kwargs)
|
||||
return model
|
||||
|
||||
|
||||
def DeiT_base_patch16_224(**kwargs):
|
||||
model = VisionTransformer(
|
||||
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
|
||||
epsilon=1e-6, **kwargs)
|
||||
patch_size=16,
|
||||
embed_dim=768,
|
||||
depth=12,
|
||||
num_heads=12,
|
||||
mlp_ratio=4,
|
||||
qkv_bias=True,
|
||||
epsilon=1e-6,
|
||||
**kwargs)
|
||||
return model
|
||||
|
||||
|
||||
def DeiT_tiny_distilled_patch16_224(**kwargs):
|
||||
model = DistilledVisionTransformer(
|
||||
patch_size=16, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, qkv_bias=True,
|
||||
epsilon=1e-6, **kwargs)
|
||||
patch_size=16,
|
||||
embed_dim=192,
|
||||
depth=12,
|
||||
num_heads=3,
|
||||
mlp_ratio=4,
|
||||
qkv_bias=True,
|
||||
epsilon=1e-6,
|
||||
**kwargs)
|
||||
return model
|
||||
|
||||
|
||||
def DeiT_small_distilled_patch16_224(**kwargs):
|
||||
model = DistilledVisionTransformer(
|
||||
patch_size=16, embed_dim=384, depth=12, num_heads=6, mlp_ratio=4, qkv_bias=True,
|
||||
epsilon=1e-6, **kwargs)
|
||||
patch_size=16,
|
||||
embed_dim=384,
|
||||
depth=12,
|
||||
num_heads=6,
|
||||
mlp_ratio=4,
|
||||
qkv_bias=True,
|
||||
epsilon=1e-6,
|
||||
**kwargs)
|
||||
return model
|
||||
|
||||
|
||||
def DeiT_base_distilled_patch16_224(**kwargs):
|
||||
model = DistilledVisionTransformer(
|
||||
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
|
||||
epsilon=1e-6, **kwargs)
|
||||
patch_size=16,
|
||||
embed_dim=768,
|
||||
depth=12,
|
||||
num_heads=12,
|
||||
mlp_ratio=4,
|
||||
qkv_bias=True,
|
||||
epsilon=1e-6,
|
||||
**kwargs)
|
||||
return model
|
||||
|
||||
|
||||
def DeiT_base_patch16_384(**kwargs):
|
||||
model = VisionTransformer(
|
||||
img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
|
||||
epsilon=1e-6, **kwargs)
|
||||
img_size=384,
|
||||
patch_size=16,
|
||||
embed_dim=768,
|
||||
depth=12,
|
||||
num_heads=12,
|
||||
mlp_ratio=4,
|
||||
qkv_bias=True,
|
||||
epsilon=1e-6,
|
||||
**kwargs)
|
||||
return model
|
||||
|
||||
|
||||
def DeiT_base_distilled_patch16_384(**kwargs):
|
||||
model = DistilledVisionTransformer(
|
||||
img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
|
||||
epsilon=1e-6, **kwargs)
|
||||
img_size=384,
|
||||
patch_size=16,
|
||||
embed_dim=768,
|
||||
depth=12,
|
||||
num_heads=12,
|
||||
mlp_ratio=4,
|
||||
qkv_bias=True,
|
||||
epsilon=1e-6,
|
||||
**kwargs)
|
||||
return model
|
||||
|
|
|
@ -12,20 +12,18 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import numpy as np
|
||||
import paddle
|
||||
import paddle.nn as nn
|
||||
from paddle.nn.initializer import TruncatedNormal, Constant
|
||||
|
||||
|
||||
__all__ = [
|
||||
"VisionTransformer",
|
||||
"ViT_small_patch16_224",
|
||||
"ViT_base_patch16_224", "ViT_base_patch16_384", "ViT_base_patch32_384",
|
||||
"ViT_large_patch16_224", "ViT_large_patch16_384", "ViT_large_patch32_384",
|
||||
"ViT_huge_patch16_224", "ViT_huge_patch32_384"
|
||||
"VisionTransformer", "ViT_small_patch16_224", "ViT_base_patch16_224",
|
||||
"ViT_base_patch16_384", "ViT_base_patch32_384", "ViT_large_patch16_224",
|
||||
"ViT_large_patch16_384", "ViT_large_patch32_384", "ViT_huge_patch16_224",
|
||||
"ViT_huge_patch32_384"
|
||||
]
|
||||
|
||||
|
||||
trunc_normal_ = TruncatedNormal(std=.02)
|
||||
zeros_ = Constant(value=0.)
|
||||
ones_ = Constant(value=1.)
|
||||
|
@ -43,12 +41,13 @@ def drop_path(x, drop_prob=0., training=False):
|
|||
if drop_prob == 0. or not training:
|
||||
return x
|
||||
keep_prob = paddle.to_tensor(1 - drop_prob)
|
||||
shape = (x.shape[0],) + (1,) * (x.ndim - 1)
|
||||
shape = (paddle.shape(x)[0], ) + (1, ) * (x.ndim - 1)
|
||||
random_tensor = keep_prob + paddle.rand(shape, dtype=x.dtype)
|
||||
random_tensor = paddle.floor(random_tensor) # binarize
|
||||
random_tensor = paddle.floor(random_tensor) # binarize
|
||||
output = x.divide(keep_prob) * random_tensor
|
||||
return output
|
||||
|
||||
|
||||
class DropPath(nn.Layer):
|
||||
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
||||
"""
|
||||
|
@ -70,7 +69,12 @@ class Identity(nn.Layer):
|
|||
|
||||
|
||||
class Mlp(nn.Layer):
|
||||
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
||||
def __init__(self,
|
||||
in_features,
|
||||
hidden_features=None,
|
||||
out_features=None,
|
||||
act_layer=nn.GELU,
|
||||
drop=0.):
|
||||
super().__init__()
|
||||
out_features = out_features or in_features
|
||||
hidden_features = hidden_features or in_features
|
||||
|
@ -89,11 +93,17 @@ class Mlp(nn.Layer):
|
|||
|
||||
|
||||
class Attention(nn.Layer):
|
||||
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
|
||||
def __init__(self,
|
||||
dim,
|
||||
num_heads=8,
|
||||
qkv_bias=False,
|
||||
qk_scale=None,
|
||||
attn_drop=0.,
|
||||
proj_drop=0.):
|
||||
super().__init__()
|
||||
self.num_heads = num_heads
|
||||
head_dim = dim // num_heads
|
||||
self.scale = qk_scale or head_dim ** -0.5
|
||||
self.scale = qk_scale or head_dim**-0.5
|
||||
|
||||
self.qkv = nn.Linear(dim, dim * 3, bias_attr=qkv_bias)
|
||||
self.attn_drop = nn.Dropout(attn_drop)
|
||||
|
@ -101,8 +111,9 @@ class Attention(nn.Layer):
|
|||
self.proj_drop = nn.Dropout(proj_drop)
|
||||
|
||||
def forward(self, x):
|
||||
B, N, C = x.shape
|
||||
qkv = self.qkv(x).reshape((B, N, 3, self.num_heads, C //
|
||||
# B= paddle.shape(x)[0]
|
||||
N, C = x.shape[1:]
|
||||
qkv = self.qkv(x).reshape((-1, N, 3, self.num_heads, C //
|
||||
self.num_heads)).transpose((2, 0, 3, 1, 4))
|
||||
q, k, v = qkv[0], qkv[1], qkv[2]
|
||||
|
||||
|
@ -110,26 +121,42 @@ class Attention(nn.Layer):
|
|||
attn = nn.functional.softmax(attn, axis=-1)
|
||||
attn = self.attn_drop(attn)
|
||||
|
||||
x = (attn.matmul(v)).transpose((0, 2, 1, 3)).reshape((B, N, C))
|
||||
x = (attn.matmul(v)).transpose((0, 2, 1, 3)).reshape((-1, N, C))
|
||||
x = self.proj(x)
|
||||
x = self.proj_drop(x)
|
||||
return x
|
||||
|
||||
|
||||
class Block(nn.Layer):
|
||||
|
||||
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
||||
drop_path=0., act_layer=nn.GELU, norm_layer='nn.LayerNorm', epsilon=1e-5):
|
||||
def __init__(self,
|
||||
dim,
|
||||
num_heads,
|
||||
mlp_ratio=4.,
|
||||
qkv_bias=False,
|
||||
qk_scale=None,
|
||||
drop=0.,
|
||||
attn_drop=0.,
|
||||
drop_path=0.,
|
||||
act_layer=nn.GELU,
|
||||
norm_layer='nn.LayerNorm',
|
||||
epsilon=1e-5):
|
||||
super().__init__()
|
||||
self.norm1 = eval(norm_layer)(dim, epsilon=epsilon)
|
||||
self.attn = Attention(
|
||||
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
|
||||
dim,
|
||||
num_heads=num_heads,
|
||||
qkv_bias=qkv_bias,
|
||||
qk_scale=qk_scale,
|
||||
attn_drop=attn_drop,
|
||||
proj_drop=drop)
|
||||
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
||||
self.drop_path = DropPath(drop_path) if drop_path > 0. else Identity()
|
||||
self.norm2 = eval(norm_layer)(dim, epsilon=epsilon)
|
||||
mlp_hidden_dim = int(dim * mlp_ratio)
|
||||
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,
|
||||
act_layer=act_layer, drop=drop)
|
||||
self.mlp = Mlp(in_features=dim,
|
||||
hidden_features=mlp_hidden_dim,
|
||||
act_layer=act_layer,
|
||||
drop=drop)
|
||||
|
||||
def forward(self, x):
|
||||
x = x + self.drop_path(self.attn(self.norm1(x)))
|
||||
|
@ -151,13 +178,13 @@ class PatchEmbed(nn.Layer):
|
|||
self.patch_size = patch_size
|
||||
self.num_patches = num_patches
|
||||
|
||||
self.proj = nn.Conv2D(in_chans, embed_dim,
|
||||
kernel_size=patch_size, stride=patch_size)
|
||||
self.proj = nn.Conv2D(
|
||||
in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
||||
|
||||
def forward(self, x):
|
||||
B, C, H, W = x.shape
|
||||
assert H == self.img_size[0] and W == self.img_size[1], \
|
||||
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
||||
"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
||||
|
||||
x = self.proj(x).flatten(2).transpose((0, 2, 1))
|
||||
return x
|
||||
|
@ -167,16 +194,33 @@ class VisionTransformer(nn.Layer):
|
|||
""" Vision Transformer with support for patch input
|
||||
"""
|
||||
|
||||
def __init__(self, img_size=224, patch_size=16, in_chans=3, class_dim=1000, embed_dim=768, depth=12,
|
||||
num_heads=12, mlp_ratio=4, qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
|
||||
drop_path_rate=0., norm_layer='nn.LayerNorm', epsilon=1e-5, **args):
|
||||
def __init__(self,
|
||||
img_size=224,
|
||||
patch_size=16,
|
||||
in_chans=3,
|
||||
class_dim=1000,
|
||||
embed_dim=768,
|
||||
depth=12,
|
||||
num_heads=12,
|
||||
mlp_ratio=4,
|
||||
qkv_bias=False,
|
||||
qk_scale=None,
|
||||
drop_rate=0.,
|
||||
attn_drop_rate=0.,
|
||||
drop_path_rate=0.,
|
||||
norm_layer='nn.LayerNorm',
|
||||
epsilon=1e-5,
|
||||
**args):
|
||||
super().__init__()
|
||||
self.class_dim = class_dim
|
||||
|
||||
self.num_features = self.embed_dim = embed_dim
|
||||
|
||||
self.patch_embed = PatchEmbed(
|
||||
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
|
||||
img_size=img_size,
|
||||
patch_size=patch_size,
|
||||
in_chans=in_chans,
|
||||
embed_dim=embed_dim)
|
||||
num_patches = self.patch_embed.num_patches
|
||||
|
||||
self.pos_embed = self.create_parameter(
|
||||
|
@ -187,23 +231,33 @@ class VisionTransformer(nn.Layer):
|
|||
self.add_parameter("cls_token", self.cls_token)
|
||||
self.pos_drop = nn.Dropout(p=drop_rate)
|
||||
|
||||
dpr = [x for x in paddle.linspace(0, drop_path_rate, depth)]
|
||||
dpr = np.linspace(0, drop_path_rate, depth)
|
||||
|
||||
self.blocks = nn.LayerList([
|
||||
Block(
|
||||
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
||||
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, epsilon=epsilon)
|
||||
for i in range(depth)])
|
||||
dim=embed_dim,
|
||||
num_heads=num_heads,
|
||||
mlp_ratio=mlp_ratio,
|
||||
qkv_bias=qkv_bias,
|
||||
qk_scale=qk_scale,
|
||||
drop=drop_rate,
|
||||
attn_drop=attn_drop_rate,
|
||||
drop_path=dpr[i],
|
||||
norm_layer=norm_layer,
|
||||
epsilon=epsilon) for i in range(depth)
|
||||
])
|
||||
|
||||
self.norm = eval(norm_layer)(embed_dim, epsilon=epsilon)
|
||||
|
||||
# Classifier head
|
||||
self.head = nn.Linear(
|
||||
embed_dim, class_dim) if class_dim > 0 else Identity()
|
||||
self.head = nn.Linear(embed_dim,
|
||||
class_dim) if class_dim > 0 else Identity()
|
||||
|
||||
trunc_normal_(self.pos_embed)
|
||||
trunc_normal_(self.cls_token)
|
||||
self.apply(self._init_weights)
|
||||
# TODO(littletomatodonkey): same init in static mode
|
||||
if paddle.in_dynamic_mode():
|
||||
trunc_normal_(self.pos_embed)
|
||||
trunc_normal_(self.cls_token)
|
||||
self.apply(self._init_weights)
|
||||
|
||||
def _init_weights(self, m):
|
||||
if isinstance(m, nn.Linear):
|
||||
|
@ -215,7 +269,8 @@ class VisionTransformer(nn.Layer):
|
|||
ones_(m.weight)
|
||||
|
||||
def forward_features(self, x):
|
||||
B = x.shape[0]
|
||||
# B = x.shape[0]
|
||||
B = paddle.shape(x)[0]
|
||||
x = self.patch_embed(x)
|
||||
cls_tokens = self.cls_token.expand((B, -1, -1))
|
||||
x = paddle.concat((cls_tokens, x), axis=1)
|
||||
|
@ -234,59 +289,116 @@ class VisionTransformer(nn.Layer):
|
|||
|
||||
def ViT_small_patch16_224(**kwargs):
|
||||
model = VisionTransformer(
|
||||
patch_size=16, embed_dim=768, depth=8, num_heads=8, mlp_ratio=3, qk_scale=768**-0.5, **kwargs)
|
||||
patch_size=16,
|
||||
embed_dim=768,
|
||||
depth=8,
|
||||
num_heads=8,
|
||||
mlp_ratio=3,
|
||||
qk_scale=768**-0.5,
|
||||
**kwargs)
|
||||
return model
|
||||
|
||||
|
||||
def ViT_base_patch16_224(**kwargs):
|
||||
model = VisionTransformer(
|
||||
patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4, qkv_bias=True,
|
||||
epsilon=1e-6, **kwargs)
|
||||
patch_size=16,
|
||||
embed_dim=768,
|
||||
depth=12,
|
||||
num_heads=12,
|
||||
mlp_ratio=4,
|
||||
qkv_bias=True,
|
||||
epsilon=1e-6,
|
||||
**kwargs)
|
||||
return model
|
||||
|
||||
|
||||
def ViT_base_patch16_384(**kwargs):
|
||||
model = VisionTransformer(
|
||||
img_size=384, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4,
|
||||
qkv_bias=True, epsilon=1e-6, **kwargs)
|
||||
img_size=384,
|
||||
patch_size=16,
|
||||
embed_dim=768,
|
||||
depth=12,
|
||||
num_heads=12,
|
||||
mlp_ratio=4,
|
||||
qkv_bias=True,
|
||||
epsilon=1e-6,
|
||||
**kwargs)
|
||||
return model
|
||||
|
||||
|
||||
def ViT_base_patch32_384(**kwargs):
|
||||
model = VisionTransformer(
|
||||
img_size=384, patch_size=32, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4,
|
||||
qkv_bias=True, epsilon=1e-6, **kwargs)
|
||||
img_size=384,
|
||||
patch_size=32,
|
||||
embed_dim=768,
|
||||
depth=12,
|
||||
num_heads=12,
|
||||
mlp_ratio=4,
|
||||
qkv_bias=True,
|
||||
epsilon=1e-6,
|
||||
**kwargs)
|
||||
return model
|
||||
|
||||
|
||||
def ViT_large_patch16_224(**kwargs):
|
||||
model = VisionTransformer(
|
||||
patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4, qkv_bias=True,
|
||||
epsilon=1e-6, **kwargs)
|
||||
patch_size=16,
|
||||
embed_dim=1024,
|
||||
depth=24,
|
||||
num_heads=16,
|
||||
mlp_ratio=4,
|
||||
qkv_bias=True,
|
||||
epsilon=1e-6,
|
||||
**kwargs)
|
||||
return model
|
||||
|
||||
|
||||
def ViT_large_patch16_384(**kwargs):
|
||||
model = VisionTransformer(
|
||||
img_size=384, patch_size=16, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4,
|
||||
qkv_bias=True, epsilon=1e-6, **kwargs)
|
||||
img_size=384,
|
||||
patch_size=16,
|
||||
embed_dim=1024,
|
||||
depth=24,
|
||||
num_heads=16,
|
||||
mlp_ratio=4,
|
||||
qkv_bias=True,
|
||||
epsilon=1e-6,
|
||||
**kwargs)
|
||||
return model
|
||||
|
||||
|
||||
def ViT_large_patch32_384(**kwargs):
|
||||
model = VisionTransformer(
|
||||
img_size=384, patch_size=32, embed_dim=1024, depth=24, num_heads=16, mlp_ratio=4,
|
||||
qkv_bias=True, epsilon=1e-6, **kwargs)
|
||||
img_size=384,
|
||||
patch_size=32,
|
||||
embed_dim=1024,
|
||||
depth=24,
|
||||
num_heads=16,
|
||||
mlp_ratio=4,
|
||||
qkv_bias=True,
|
||||
epsilon=1e-6,
|
||||
**kwargs)
|
||||
return model
|
||||
|
||||
|
||||
def ViT_huge_patch16_224(**kwargs):
|
||||
model = VisionTransformer(
|
||||
patch_size=16, embed_dim=1280, depth=32, num_heads=16, mlp_ratio=4, **kwargs)
|
||||
patch_size=16,
|
||||
embed_dim=1280,
|
||||
depth=32,
|
||||
num_heads=16,
|
||||
mlp_ratio=4,
|
||||
**kwargs)
|
||||
return model
|
||||
|
||||
|
||||
def ViT_huge_patch32_384(**kwargs):
|
||||
model = VisionTransformer(
|
||||
img_size=384, patch_size=32, embed_dim=1280, depth=32, num_heads=16, mlp_ratio=4, **kwargs)
|
||||
img_size=384,
|
||||
patch_size=32,
|
||||
embed_dim=1280,
|
||||
depth=32,
|
||||
num_heads=16,
|
||||
mlp_ratio=4,
|
||||
**kwargs)
|
||||
return model
|
||||
|
|
Loading…
Reference in New Issue