fix
parent
87ada03d05
commit
0dcb5a6789
|
@ -62,3 +62,16 @@ python eval.py \
|
|||
-o pretrained_model=path_to_pretrained_models
|
||||
```
|
||||
您可以更改configs/eval.yaml中的architecture字段和pretrained_model字段来配置评估模型,或是通过-o参数更新配置。
|
||||
|
||||
## 3 模型推理
|
||||
|
||||
PaddleClas通过预测引擎进行预测推理
|
||||
|
||||
```bash
|
||||
python tools/predict.py \
|
||||
-m model文件路径
|
||||
-p params文件路径
|
||||
-i 图片路径
|
||||
--use_tensorrt True
|
||||
```
|
||||
更多推理方式和实验请参考[分类预测框架](../extension/paddle_inference.md)
|
||||
|
|
|
@ -12,14 +12,17 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
import utils
|
||||
import argparse
|
||||
import numpy as np
|
||||
|
||||
import logging
|
||||
import time
|
||||
from paddle.fluid.core import PaddleTensor
|
||||
from paddle.fluid.core import AnalysisConfig
|
||||
from paddle.fluid.core import create_paddle_predictor
|
||||
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
def parse_args():
|
||||
def str2bool(v):
|
||||
|
@ -29,10 +32,14 @@ def parse_args():
|
|||
parser.add_argument("-i", "--image_file", type=str)
|
||||
parser.add_argument("-m", "--model_file", type=str)
|
||||
parser.add_argument("-p", "--params_file", type=str)
|
||||
parser.add_argument("-b", "--max_batch_size", type=int, default=1)
|
||||
parser.add_argument("-b", "--batch_size", type=int, default=1)
|
||||
parser.add_argument("--use_fp16", type=str2bool, default=False)
|
||||
parser.add_argument("--use_gpu", type=str2bool, default=True)
|
||||
parser.add_argument("--ir_optim", type=str2bool, default=True)
|
||||
parser.add_argument("--use_tensorrt", type=str2bool, default=False)
|
||||
parser.add_argument("--gpu_mem", type=int, default=8000)
|
||||
parser.add_argument("--enable_benchmark", type=str2bool, default=False)
|
||||
parser.add_argument("--model_name", type=str)
|
||||
|
||||
return parser.parse_args()
|
||||
|
||||
|
@ -40,15 +47,19 @@ def parse_args():
|
|||
def create_predictor(args):
|
||||
config = AnalysisConfig(args.model_file, args.params_file)
|
||||
if args.use_gpu:
|
||||
config.enable_use_gpu(1000, 0)
|
||||
config.enable_use_gpu(args.gpu_mem, 0)
|
||||
else:
|
||||
config.disable_gpu()
|
||||
|
||||
config.switch_ir_optim(args.ir_optim) # default true
|
||||
config.disable_glog_info()
|
||||
config.switch_ir_optim(args.ir_optim) # default true
|
||||
if args.use_tensorrt:
|
||||
config.enable_tensorrt_engine(
|
||||
precision_mode=AnalysisConfig.Precision.Float32,
|
||||
max_batch_size=args.max_batch_size)
|
||||
precision_mode=AnalysisConfig.Precision.Half if args.use_fp16 else AnalysisConfig.Precision.Float32,
|
||||
max_batch_size=args.batch_size)
|
||||
|
||||
config.enable_memory_optim()
|
||||
# use zero copy
|
||||
config.switch_use_feed_fetch_ops(False)
|
||||
predictor = create_paddle_predictor(config)
|
||||
|
||||
return predictor
|
||||
|
@ -64,7 +75,7 @@ def create_operators():
|
|||
resize_op = utils.ResizeImage(resize_short=256)
|
||||
crop_op = utils.CropImage(size=(size, size))
|
||||
normalize_op = utils.NormalizeImage(
|
||||
scale=img_scale, mean=img_mean, std=img_std)
|
||||
scale=img_scale, mean=img_mean, std=img_std)
|
||||
totensor_op = utils.ToTensor()
|
||||
|
||||
return [decode_op, resize_op, crop_op, normalize_op, totensor_op]
|
||||
|
@ -78,25 +89,37 @@ def preprocess(fname, ops):
|
|||
return data
|
||||
|
||||
|
||||
def postprocess(outputs, topk=5):
|
||||
output = outputs[0]
|
||||
prob = output.as_ndarray().flatten()
|
||||
index = prob.argsort(axis=0)[-topk:][::-1].astype('int32')
|
||||
return zip(index, prob[index])
|
||||
|
||||
|
||||
def main():
|
||||
args = parse_args()
|
||||
operators = create_operators()
|
||||
predictor = create_predictor(args)
|
||||
|
||||
data = preprocess(args.image_file, operators)
|
||||
inputs = [PaddleTensor(data.copy())]
|
||||
outputs = predictor.run(inputs)
|
||||
probs = postprocess(outputs)
|
||||
inputs = preprocess(args.image_file, operators)
|
||||
inputs = np.expand_dims(inputs, axis=0).repeat(args.batch_size, axis=0).copy()
|
||||
|
||||
for idx, prob in probs:
|
||||
print("class id: {:d}, probability: {:.4f}".format(idx, prob))
|
||||
input_names = predictor.get_input_names()
|
||||
input_tensor = predictor.get_input_tensor(input_names[0])
|
||||
input_tensor.copy_from_cpu(inputs)
|
||||
if not args.enable_benchmark:
|
||||
predictor.zero_copy_run()
|
||||
else:
|
||||
for i in range(0,1010):
|
||||
if i == 10:
|
||||
start = time.time()
|
||||
predictor.zero_copy_run()
|
||||
|
||||
end = time.time()
|
||||
fp_message = "FP16" if args.use_fp16 else "FP32"
|
||||
logger.info("{0}\t{1}\tbatch size: {2}\ttime(ms): {3}".format(args.model_name, fp_message, args.batch_size, end-start))
|
||||
|
||||
output_names = predictor.get_output_names()
|
||||
output_tensor = predictor.get_output_tensor(output_names[0])
|
||||
output = output_tensor.copy_to_cpu()
|
||||
output = output.flatten()
|
||||
cls = np.argmax(output)
|
||||
score = output[cls]
|
||||
logger.info("class: {0}".format(cls))
|
||||
logger.info("score: {0}".format(score))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
|
@ -1,49 +0,0 @@
|
|||
#!/usr/bin/env bash
|
||||
|
||||
python ./cpp_infer.py \
|
||||
-i=./test.jpeg \
|
||||
-m=./resnet50-vd/model \
|
||||
-p=./resnet50-vd/params \
|
||||
--use_gpu=1
|
||||
|
||||
python ./cpp_infer.py \
|
||||
-i=./test.jpeg \
|
||||
-m=./resnet50-vd/model \
|
||||
-p=./resnet50-vd/params \
|
||||
--use_gpu=0
|
||||
|
||||
python py_infer.py \
|
||||
-i=./test.jpeg \
|
||||
-d ./resnet50-vd/ \
|
||||
-m=model -p=params \
|
||||
--use_gpu=0
|
||||
|
||||
python py_infer.py \
|
||||
-i=./test.jpeg \
|
||||
-d ./resnet50-vd/ \
|
||||
-m=model -p=params \
|
||||
--use_gpu=1
|
||||
|
||||
python infer.py \
|
||||
-i=./test.jpeg \
|
||||
-m ResNet50_vd \
|
||||
-p ./resnet50-vd-persistable/ \
|
||||
--use_gpu=0
|
||||
|
||||
python infer.py \
|
||||
-i=./test.jpeg \
|
||||
-m ResNet50_vd \
|
||||
-p ./resnet50-vd-persistable/ \
|
||||
--use_gpu=1
|
||||
|
||||
python export_model.py \
|
||||
-m ResNet50_vd \
|
||||
-p ./resnet50-vd-persistable/ \
|
||||
-o ./test/
|
||||
|
||||
python py_infer.py \
|
||||
-i=./test.jpeg \
|
||||
-d ./test/ \
|
||||
-m=model \
|
||||
-p=params \
|
||||
--use_gpu=0
|
|
@ -81,5 +81,4 @@ class ToTensor(object):
|
|||
|
||||
def __call__(self, img):
|
||||
img = img.transpose((2, 0, 1))
|
||||
img = np.expand_dims(img, axis=0)
|
||||
return img
|
||||
|
|
Loading…
Reference in New Issue