refine code
parent
16f910b451
commit
1c31010b14
|
@ -71,6 +71,7 @@ DataLoader:
|
|||
- ResizeImage:
|
||||
size: [128, 256]
|
||||
return_numpy: False
|
||||
backend: "pil"
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- Pad:
|
||||
|
@ -101,6 +102,7 @@ DataLoader:
|
|||
- ResizeImage:
|
||||
size: [128, 256]
|
||||
return_numpy: False
|
||||
backend: "pil"
|
||||
- ToTensor:
|
||||
- Normalize:
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
|
@ -124,6 +126,7 @@ DataLoader:
|
|||
- ResizeImage:
|
||||
size: [128, 256]
|
||||
return_numpy: False
|
||||
backend: "pil"
|
||||
- ToTensor:
|
||||
- Normalize:
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
|
|
|
@ -90,6 +90,7 @@ DataLoader:
|
|||
- ResizeImage:
|
||||
size: [128, 256]
|
||||
return_numpy: False
|
||||
backend: "pil"
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- Pad:
|
||||
|
@ -126,6 +127,7 @@ DataLoader:
|
|||
- ResizeImage:
|
||||
size: [128, 256]
|
||||
return_numpy: False
|
||||
backend: "pil"
|
||||
- ToTensor:
|
||||
- Normalize:
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
|
@ -149,6 +151,7 @@ DataLoader:
|
|||
- ResizeImage:
|
||||
size: [128, 256]
|
||||
return_numpy: False
|
||||
backend: "pil"
|
||||
- ToTensor:
|
||||
- Normalize:
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
|
|
|
@ -64,7 +64,7 @@ Loss:
|
|||
weight: 0.0005
|
||||
num_classes: *class_num
|
||||
feat_dim: *feat_dim
|
||||
feat_from: "backbone"
|
||||
feature_from: "backbone"
|
||||
Eval:
|
||||
- CELoss:
|
||||
weight: 1.0
|
||||
|
@ -101,6 +101,7 @@ DataLoader:
|
|||
- ResizeImage:
|
||||
size: [128, 256]
|
||||
return_numpy: False
|
||||
backend: "pil"
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- Pad:
|
||||
|
@ -137,6 +138,7 @@ DataLoader:
|
|||
- ResizeImage:
|
||||
size: [128, 256]
|
||||
return_numpy: False
|
||||
backend: "pil"
|
||||
- ToTensor:
|
||||
- Normalize:
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
|
@ -160,6 +162,7 @@ DataLoader:
|
|||
- ResizeImage:
|
||||
size: [128, 256]
|
||||
return_numpy: False
|
||||
backend: "pil"
|
||||
- ToTensor:
|
||||
- Normalize:
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
|
|
|
@ -25,6 +25,7 @@ from ppcls.data.preprocess.ops.operators import DecodeImage
|
|||
from ppcls.data.preprocess.ops.operators import ResizeImage
|
||||
from ppcls.data.preprocess.ops.operators import CropImage
|
||||
from ppcls.data.preprocess.ops.operators import RandCropImage
|
||||
from ppcls.data.preprocess.ops.operators import RandCropImageV2
|
||||
from ppcls.data.preprocess.ops.operators import RandFlipImage
|
||||
from ppcls.data.preprocess.ops.operators import NormalizeImage
|
||||
from ppcls.data.preprocess.ops.operators import ToCHWImage
|
||||
|
|
|
@ -63,6 +63,8 @@ class UnifiedResize(object):
|
|||
resample = random.choice(resample)
|
||||
if isinstance(src, np.ndarray):
|
||||
pil_img = Image.fromarray(src)
|
||||
else:
|
||||
pil_img = src
|
||||
pil_img = pil_img.resize(size, resample)
|
||||
if return_numpy:
|
||||
return np.asarray(pil_img)
|
||||
|
|
|
@ -254,8 +254,9 @@ class Engine(object):
|
|||
world_size = dist.get_world_size()
|
||||
self.config["Global"]["distributed"] = world_size != 1
|
||||
if self.mode == "train":
|
||||
std_gpu_num = 8 if self.config["Optimizer"][
|
||||
"name"] == "AdamW" else 4
|
||||
std_gpu_num = 8 if isinstance(
|
||||
self.config["Optimizer"],
|
||||
dict) and self.config["Optimizer"]["name"] == "AdamW" else 4
|
||||
if world_size != std_gpu_num:
|
||||
msg = f"The training strategy provided by PaddleClas is based on {std_gpu_num} gpus. But the number of gpu is {world_size} in current training. Please modify the stategy (learning rate, batch size and so on) if use this config to train."
|
||||
logger.warning(msg)
|
||||
|
|
Loading…
Reference in New Issue