mirror of
https://github.com/PaddlePaddle/PaddleClas.git
synced 2025-06-03 21:55:06 +08:00
fix: fix augmentation
Fix RandomErasing, RandAugment to be consistent with Timm and compatible with earlier PaddleClas. Add ColorJitter implemented by PaddleVision and TimmAutoAugment borrowed from Timm Lib.
This commit is contained in:
parent
ef2fd19bb0
commit
1f8cfbd69d
@ -14,6 +14,7 @@
|
||||
|
||||
from ppcls.data.preprocess.ops.autoaugment import ImageNetPolicy as RawImageNetPolicy
|
||||
from ppcls.data.preprocess.ops.randaugment import RandAugment as RawRandAugment
|
||||
from ppcls.data.preprocess.ops.timm_autoaugment import RawTimmAutoAugment
|
||||
from ppcls.data.preprocess.ops.cutout import Cutout
|
||||
|
||||
from ppcls.data.preprocess.ops.hide_and_seek import HideAndSeek
|
||||
@ -31,7 +32,6 @@ from ppcls.data.preprocess.ops.operators import AugMix
|
||||
|
||||
from ppcls.data.preprocess.batch_ops.batch_operators import MixupOperator, CutmixOperator, OpSampler, FmixOperator
|
||||
|
||||
import six
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
@ -47,20 +47,14 @@ class AutoAugment(RawImageNetPolicy):
|
||||
""" ImageNetPolicy wrapper to auto fit different img types """
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
if six.PY2:
|
||||
super(AutoAugment, self).__init__(*args, **kwargs)
|
||||
else:
|
||||
super().__init__(*args, **kwargs)
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def __call__(self, img):
|
||||
if not isinstance(img, Image.Image):
|
||||
img = np.ascontiguousarray(img)
|
||||
img = Image.fromarray(img)
|
||||
|
||||
if six.PY2:
|
||||
img = super(AutoAugment, self).__call__(img)
|
||||
else:
|
||||
img = super().__call__(img)
|
||||
img = super().__call__(img)
|
||||
|
||||
if isinstance(img, Image.Image):
|
||||
img = np.asarray(img)
|
||||
@ -72,20 +66,33 @@ class RandAugment(RawRandAugment):
|
||||
""" RandAugment wrapper to auto fit different img types """
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
if six.PY2:
|
||||
super(RandAugment, self).__init__(*args, **kwargs)
|
||||
else:
|
||||
super().__init__(*args, **kwargs)
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def __call__(self, img):
|
||||
if not isinstance(img, Image.Image):
|
||||
img = np.ascontiguousarray(img)
|
||||
img = Image.fromarray(img)
|
||||
|
||||
if six.PY2:
|
||||
img = super(RandAugment, self).__call__(img)
|
||||
else:
|
||||
img = super().__call__(img)
|
||||
img = super().__call__(img)
|
||||
|
||||
if isinstance(img, Image.Image):
|
||||
img = np.asarray(img)
|
||||
|
||||
return img
|
||||
|
||||
|
||||
class TimmAutoAugment(RawTimmAutoAugment):
|
||||
""" TimmAutoAugment wrapper to auto fit different img tyeps. """
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def __call__(self, img):
|
||||
if not isinstance(img, Image.Image):
|
||||
img = np.ascontiguousarray(img)
|
||||
img = Image.fromarray(img)
|
||||
|
||||
img = super().__call__(img)
|
||||
|
||||
if isinstance(img, Image.Image):
|
||||
img = np.asarray(img)
|
||||
|
@ -26,6 +26,7 @@ import random
|
||||
import cv2
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
from paddle.vision.transforms import ColorJitter as RawColorJitter
|
||||
|
||||
from .autoaugment import ImageNetPolicy
|
||||
from .functional import augmentations
|
||||
@ -363,3 +364,20 @@ class AugMix(object):
|
||||
|
||||
mixed = (1 - m) * image + m * mix
|
||||
return mixed.astype(np.uint8)
|
||||
|
||||
|
||||
class ColorJitter(RawColorJitter):
|
||||
"""ColorJitter.
|
||||
"""
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def __call__(self, img):
|
||||
if not isinstance(img, Image.Image):
|
||||
img = np.ascontiguousarray(img)
|
||||
img = Image.fromarray(img)
|
||||
img = super()._apply_image(img)
|
||||
if isinstance(img, Image.Image):
|
||||
img = np.asarray(img)
|
||||
return img
|
||||
|
@ -12,7 +12,9 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
#This code is based on https://github.com/zhunzhong07/Random-Erasing
|
||||
#This code is adapted from https://github.com/zhunzhong07/Random-Erasing, and refer to Timm.
|
||||
|
||||
from functools import partial
|
||||
|
||||
import math
|
||||
import random
|
||||
@ -20,36 +22,69 @@ import random
|
||||
import numpy as np
|
||||
|
||||
|
||||
class Pixels(object):
|
||||
def __init__(self, mode="const", mean=[0., 0., 0.]):
|
||||
self._mode = mode
|
||||
self._mean = mean
|
||||
|
||||
def __call__(self, h=224, w=224, c=3):
|
||||
if self._mode == "rand":
|
||||
return np.random.normal(size=(1, 1, 3))
|
||||
elif self._mode == "pixel":
|
||||
return np.random.normal(size=(h, w, c))
|
||||
elif self._mode == "const":
|
||||
return self._mean
|
||||
else:
|
||||
raise Exception(
|
||||
"Invalid mode in RandomErasing, only support \"const\", \"rand\", \"pixel\""
|
||||
)
|
||||
|
||||
|
||||
class RandomErasing(object):
|
||||
def __init__(self, EPSILON=0.5, sl=0.02, sh=0.4, r1=0.3,
|
||||
mean=[0., 0., 0.]):
|
||||
self.EPSILON = EPSILON
|
||||
self.mean = mean
|
||||
self.sl = sl
|
||||
self.sh = sh
|
||||
self.r1 = r1
|
||||
"""RandomErasing.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
EPSILON=0.5,
|
||||
sl=0.02,
|
||||
sh=0.4,
|
||||
r1=0.3,
|
||||
mean=[0., 0., 0.],
|
||||
attempt=100,
|
||||
use_log_aspect=False,
|
||||
mode='const'):
|
||||
self.EPSILON = eval(EPSILON) if isinstance(EPSILON, str) else EPSILON
|
||||
self.sl = eval(sl) if isinstance(sl, str) else sl
|
||||
self.sh = eval(sh) if isinstance(sh, str) else sh
|
||||
r1 = eval(r1) if isinstance(r1, str) else r1
|
||||
self.r1 = (math.log(r1), math.log(1 / r1)) if use_log_aspect else (
|
||||
r1, 1 / r1)
|
||||
self.use_log_aspect = use_log_aspect
|
||||
self.attempt = attempt
|
||||
self.get_pixels = Pixels(mode, mean)
|
||||
|
||||
def __call__(self, img):
|
||||
if random.uniform(0, 1) > self.EPSILON:
|
||||
if random.random() > self.EPSILON:
|
||||
return img
|
||||
|
||||
for _ in range(100):
|
||||
for _ in range(self.attempt):
|
||||
area = img.shape[0] * img.shape[1]
|
||||
|
||||
target_area = random.uniform(self.sl, self.sh) * area
|
||||
aspect_ratio = random.uniform(self.r1, 1 / self.r1)
|
||||
aspect_ratio = random.uniform(*self.r1)
|
||||
if self.use_log_aspect:
|
||||
aspect_ratio = math.exp(aspect_ratio)
|
||||
|
||||
h = int(round(math.sqrt(target_area * aspect_ratio)))
|
||||
w = int(round(math.sqrt(target_area / aspect_ratio)))
|
||||
|
||||
if w < img.shape[1] and h < img.shape[0]:
|
||||
pixels = self.get_pixels(h, w, img.shape[2])
|
||||
x1 = random.randint(0, img.shape[0] - h)
|
||||
y1 = random.randint(0, img.shape[1] - w)
|
||||
if img.shape[0] == 3:
|
||||
img[x1:x1 + h, y1:y1 + w, 0] = self.mean[0]
|
||||
img[x1:x1 + h, y1:y1 + w, 1] = self.mean[1]
|
||||
img[x1:x1 + h, y1:y1 + w, 2] = self.mean[2]
|
||||
if img.shape[2] == 3:
|
||||
img[x1:x1 + h, y1:y1 + w, :] = pixels
|
||||
else:
|
||||
img[0, x1:x1 + h, y1:y1 + w] = self.mean[1]
|
||||
img[x1:x1 + h, y1:y1 + w, 0] = pixels[0]
|
||||
return img
|
||||
return img
|
||||
|
879
ppcls/data/preprocess/ops/timm_autoaugment.py
Normal file
879
ppcls/data/preprocess/ops/timm_autoaugment.py
Normal file
@ -0,0 +1,879 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
This code implements is borrowed from Timm: https://github.com/rwightman/pytorch-image-models.
|
||||
hacked together by / Copyright 2020 Ross Wightman
|
||||
"""
|
||||
|
||||
import random
|
||||
import math
|
||||
import re
|
||||
from PIL import Image, ImageOps, ImageEnhance, ImageChops
|
||||
import PIL
|
||||
import numpy as np
|
||||
|
||||
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
|
||||
|
||||
_PIL_VER = tuple([int(x) for x in PIL.__version__.split('.')[:2]])
|
||||
|
||||
_FILL = (128, 128, 128)
|
||||
|
||||
# This signifies the max integer that the controller RNN could predict for the
|
||||
# augmentation scheme.
|
||||
_MAX_LEVEL = 10.
|
||||
|
||||
_HPARAMS_DEFAULT = dict(
|
||||
translate_const=250,
|
||||
img_mean=_FILL, )
|
||||
|
||||
_RANDOM_INTERPOLATION = (Image.BILINEAR, Image.BICUBIC)
|
||||
|
||||
|
||||
def _pil_interp(method):
|
||||
if method == 'bicubic':
|
||||
return Image.BICUBIC
|
||||
elif method == 'lanczos':
|
||||
return Image.LANCZOS
|
||||
elif method == 'hamming':
|
||||
return Image.HAMMING
|
||||
else:
|
||||
# default bilinear, do we want to allow nearest?
|
||||
return Image.BILINEAR
|
||||
|
||||
|
||||
def _interpolation(kwargs):
|
||||
interpolation = kwargs.pop('resample', Image.BILINEAR)
|
||||
if isinstance(interpolation, (list, tuple)):
|
||||
return random.choice(interpolation)
|
||||
else:
|
||||
return interpolation
|
||||
|
||||
|
||||
def _check_args_tf(kwargs):
|
||||
if 'fillcolor' in kwargs and _PIL_VER < (5, 0):
|
||||
kwargs.pop('fillcolor')
|
||||
kwargs['resample'] = _interpolation(kwargs)
|
||||
|
||||
|
||||
def shear_x(img, factor, **kwargs):
|
||||
_check_args_tf(kwargs)
|
||||
return img.transform(img.size, Image.AFFINE, (1, factor, 0, 0, 1, 0),
|
||||
**kwargs)
|
||||
|
||||
|
||||
def shear_y(img, factor, **kwargs):
|
||||
_check_args_tf(kwargs)
|
||||
return img.transform(img.size, Image.AFFINE, (1, 0, 0, factor, 1, 0),
|
||||
**kwargs)
|
||||
|
||||
|
||||
def translate_x_rel(img, pct, **kwargs):
|
||||
pixels = pct * img.size[0]
|
||||
_check_args_tf(kwargs)
|
||||
return img.transform(img.size, Image.AFFINE, (1, 0, pixels, 0, 1, 0),
|
||||
**kwargs)
|
||||
|
||||
|
||||
def translate_y_rel(img, pct, **kwargs):
|
||||
pixels = pct * img.size[1]
|
||||
_check_args_tf(kwargs)
|
||||
return img.transform(img.size, Image.AFFINE, (1, 0, 0, 0, 1, pixels),
|
||||
**kwargs)
|
||||
|
||||
|
||||
def translate_x_abs(img, pixels, **kwargs):
|
||||
_check_args_tf(kwargs)
|
||||
return img.transform(img.size, Image.AFFINE, (1, 0, pixels, 0, 1, 0),
|
||||
**kwargs)
|
||||
|
||||
|
||||
def translate_y_abs(img, pixels, **kwargs):
|
||||
_check_args_tf(kwargs)
|
||||
return img.transform(img.size, Image.AFFINE, (1, 0, 0, 0, 1, pixels),
|
||||
**kwargs)
|
||||
|
||||
|
||||
def rotate(img, degrees, **kwargs):
|
||||
_check_args_tf(kwargs)
|
||||
if _PIL_VER >= (5, 2):
|
||||
return img.rotate(degrees, **kwargs)
|
||||
elif _PIL_VER >= (5, 0):
|
||||
w, h = img.size
|
||||
post_trans = (0, 0)
|
||||
rotn_center = (w / 2.0, h / 2.0)
|
||||
angle = -math.radians(degrees)
|
||||
matrix = [
|
||||
round(math.cos(angle), 15),
|
||||
round(math.sin(angle), 15),
|
||||
0.0,
|
||||
round(-math.sin(angle), 15),
|
||||
round(math.cos(angle), 15),
|
||||
0.0,
|
||||
]
|
||||
|
||||
def transform(x, y, matrix):
|
||||
(a, b, c, d, e, f) = matrix
|
||||
return a * x + b * y + c, d * x + e * y + f
|
||||
|
||||
matrix[2], matrix[5] = transform(-rotn_center[0] - post_trans[0],
|
||||
-rotn_center[1] - post_trans[1],
|
||||
matrix)
|
||||
matrix[2] += rotn_center[0]
|
||||
matrix[5] += rotn_center[1]
|
||||
return img.transform(img.size, Image.AFFINE, matrix, **kwargs)
|
||||
else:
|
||||
return img.rotate(degrees, resample=kwargs['resample'])
|
||||
|
||||
|
||||
def auto_contrast(img, **__):
|
||||
return ImageOps.autocontrast(img)
|
||||
|
||||
|
||||
def invert(img, **__):
|
||||
return ImageOps.invert(img)
|
||||
|
||||
|
||||
def equalize(img, **__):
|
||||
return ImageOps.equalize(img)
|
||||
|
||||
|
||||
def solarize(img, thresh, **__):
|
||||
return ImageOps.solarize(img, thresh)
|
||||
|
||||
|
||||
def solarize_add(img, add, thresh=128, **__):
|
||||
lut = []
|
||||
for i in range(256):
|
||||
if i < thresh:
|
||||
lut.append(min(255, i + add))
|
||||
else:
|
||||
lut.append(i)
|
||||
if img.mode in ("L", "RGB"):
|
||||
if img.mode == "RGB" and len(lut) == 256:
|
||||
lut = lut + lut + lut
|
||||
return img.point(lut)
|
||||
else:
|
||||
return img
|
||||
|
||||
|
||||
def posterize(img, bits_to_keep, **__):
|
||||
if bits_to_keep >= 8:
|
||||
return img
|
||||
return ImageOps.posterize(img, bits_to_keep)
|
||||
|
||||
|
||||
def contrast(img, factor, **__):
|
||||
return ImageEnhance.Contrast(img).enhance(factor)
|
||||
|
||||
|
||||
def color(img, factor, **__):
|
||||
return ImageEnhance.Color(img).enhance(factor)
|
||||
|
||||
|
||||
def brightness(img, factor, **__):
|
||||
return ImageEnhance.Brightness(img).enhance(factor)
|
||||
|
||||
|
||||
def sharpness(img, factor, **__):
|
||||
return ImageEnhance.Sharpness(img).enhance(factor)
|
||||
|
||||
|
||||
def _randomly_negate(v):
|
||||
"""With 50% prob, negate the value"""
|
||||
return -v if random.random() > 0.5 else v
|
||||
|
||||
|
||||
def _rotate_level_to_arg(level, _hparams):
|
||||
# range [-30, 30]
|
||||
level = (level / _MAX_LEVEL) * 30.
|
||||
level = _randomly_negate(level)
|
||||
return level,
|
||||
|
||||
|
||||
def _enhance_level_to_arg(level, _hparams):
|
||||
# range [0.1, 1.9]
|
||||
return (level / _MAX_LEVEL) * 1.8 + 0.1,
|
||||
|
||||
|
||||
def _enhance_increasing_level_to_arg(level, _hparams):
|
||||
# the 'no change' level is 1.0, moving away from that towards 0. or 2.0 increases the enhancement blend
|
||||
# range [0.1, 1.9]
|
||||
level = (level / _MAX_LEVEL) * .9
|
||||
level = 1.0 + _randomly_negate(level)
|
||||
return level,
|
||||
|
||||
|
||||
def _shear_level_to_arg(level, _hparams):
|
||||
# range [-0.3, 0.3]
|
||||
level = (level / _MAX_LEVEL) * 0.3
|
||||
level = _randomly_negate(level)
|
||||
return level,
|
||||
|
||||
|
||||
def _translate_abs_level_to_arg(level, hparams):
|
||||
translate_const = hparams['translate_const']
|
||||
level = (level / _MAX_LEVEL) * float(translate_const)
|
||||
level = _randomly_negate(level)
|
||||
return level,
|
||||
|
||||
|
||||
def _translate_rel_level_to_arg(level, hparams):
|
||||
# default range [-0.45, 0.45]
|
||||
translate_pct = hparams.get('translate_pct', 0.45)
|
||||
level = (level / _MAX_LEVEL) * translate_pct
|
||||
level = _randomly_negate(level)
|
||||
return level,
|
||||
|
||||
|
||||
def _posterize_level_to_arg(level, _hparams):
|
||||
# As per Tensorflow TPU EfficientNet impl
|
||||
# range [0, 4], 'keep 0 up to 4 MSB of original image'
|
||||
# intensity/severity of augmentation decreases with level
|
||||
return int((level / _MAX_LEVEL) * 4),
|
||||
|
||||
|
||||
def _posterize_increasing_level_to_arg(level, hparams):
|
||||
# As per Tensorflow models research and UDA impl
|
||||
# range [4, 0], 'keep 4 down to 0 MSB of original image',
|
||||
# intensity/severity of augmentation increases with level
|
||||
return 4 - _posterize_level_to_arg(level, hparams)[0],
|
||||
|
||||
|
||||
def _posterize_original_level_to_arg(level, _hparams):
|
||||
# As per original AutoAugment paper description
|
||||
# range [4, 8], 'keep 4 up to 8 MSB of image'
|
||||
# intensity/severity of augmentation decreases with level
|
||||
return int((level / _MAX_LEVEL) * 4) + 4,
|
||||
|
||||
|
||||
def _solarize_level_to_arg(level, _hparams):
|
||||
# range [0, 256]
|
||||
# intensity/severity of augmentation decreases with level
|
||||
return int((level / _MAX_LEVEL) * 256),
|
||||
|
||||
|
||||
def _solarize_increasing_level_to_arg(level, _hparams):
|
||||
# range [0, 256]
|
||||
# intensity/severity of augmentation increases with level
|
||||
return 256 - _solarize_level_to_arg(level, _hparams)[0],
|
||||
|
||||
|
||||
def _solarize_add_level_to_arg(level, _hparams):
|
||||
# range [0, 110]
|
||||
return int((level / _MAX_LEVEL) * 110),
|
||||
|
||||
|
||||
LEVEL_TO_ARG = {
|
||||
'AutoContrast': None,
|
||||
'Equalize': None,
|
||||
'Invert': None,
|
||||
'Rotate': _rotate_level_to_arg,
|
||||
# There are several variations of the posterize level scaling in various Tensorflow/Google repositories/papers
|
||||
'Posterize': _posterize_level_to_arg,
|
||||
'PosterizeIncreasing': _posterize_increasing_level_to_arg,
|
||||
'PosterizeOriginal': _posterize_original_level_to_arg,
|
||||
'Solarize': _solarize_level_to_arg,
|
||||
'SolarizeIncreasing': _solarize_increasing_level_to_arg,
|
||||
'SolarizeAdd': _solarize_add_level_to_arg,
|
||||
'Color': _enhance_level_to_arg,
|
||||
'ColorIncreasing': _enhance_increasing_level_to_arg,
|
||||
'Contrast': _enhance_level_to_arg,
|
||||
'ContrastIncreasing': _enhance_increasing_level_to_arg,
|
||||
'Brightness': _enhance_level_to_arg,
|
||||
'BrightnessIncreasing': _enhance_increasing_level_to_arg,
|
||||
'Sharpness': _enhance_level_to_arg,
|
||||
'SharpnessIncreasing': _enhance_increasing_level_to_arg,
|
||||
'ShearX': _shear_level_to_arg,
|
||||
'ShearY': _shear_level_to_arg,
|
||||
'TranslateX': _translate_abs_level_to_arg,
|
||||
'TranslateY': _translate_abs_level_to_arg,
|
||||
'TranslateXRel': _translate_rel_level_to_arg,
|
||||
'TranslateYRel': _translate_rel_level_to_arg,
|
||||
}
|
||||
|
||||
NAME_TO_OP = {
|
||||
'AutoContrast': auto_contrast,
|
||||
'Equalize': equalize,
|
||||
'Invert': invert,
|
||||
'Rotate': rotate,
|
||||
'Posterize': posterize,
|
||||
'PosterizeIncreasing': posterize,
|
||||
'PosterizeOriginal': posterize,
|
||||
'Solarize': solarize,
|
||||
'SolarizeIncreasing': solarize,
|
||||
'SolarizeAdd': solarize_add,
|
||||
'Color': color,
|
||||
'ColorIncreasing': color,
|
||||
'Contrast': contrast,
|
||||
'ContrastIncreasing': contrast,
|
||||
'Brightness': brightness,
|
||||
'BrightnessIncreasing': brightness,
|
||||
'Sharpness': sharpness,
|
||||
'SharpnessIncreasing': sharpness,
|
||||
'ShearX': shear_x,
|
||||
'ShearY': shear_y,
|
||||
'TranslateX': translate_x_abs,
|
||||
'TranslateY': translate_y_abs,
|
||||
'TranslateXRel': translate_x_rel,
|
||||
'TranslateYRel': translate_y_rel,
|
||||
}
|
||||
|
||||
|
||||
class AugmentOp(object):
|
||||
def __init__(self, name, prob=0.5, magnitude=10, hparams=None):
|
||||
hparams = hparams or _HPARAMS_DEFAULT
|
||||
self.aug_fn = NAME_TO_OP[name]
|
||||
self.level_fn = LEVEL_TO_ARG[name]
|
||||
self.prob = prob
|
||||
self.magnitude = magnitude
|
||||
self.hparams = hparams.copy()
|
||||
self.kwargs = dict(
|
||||
fillcolor=hparams['img_mean'] if 'img_mean' in hparams else _FILL,
|
||||
resample=hparams['interpolation']
|
||||
if 'interpolation' in hparams else _RANDOM_INTERPOLATION, )
|
||||
|
||||
# If magnitude_std is > 0, we introduce some randomness
|
||||
# in the usually fixed policy and sample magnitude from a normal distribution
|
||||
# with mean `magnitude` and std-dev of `magnitude_std`.
|
||||
# NOTE This is my own hack, being tested, not in papers or reference impls.
|
||||
self.magnitude_std = self.hparams.get('magnitude_std', 0)
|
||||
|
||||
def __call__(self, img):
|
||||
if self.prob < 1.0 and random.random() > self.prob:
|
||||
return img
|
||||
magnitude = self.magnitude
|
||||
if self.magnitude_std and self.magnitude_std > 0:
|
||||
magnitude = random.gauss(magnitude, self.magnitude_std)
|
||||
magnitude = min(_MAX_LEVEL, max(0, magnitude)) # clip to valid range
|
||||
level_args = self.level_fn(
|
||||
magnitude, self.hparams) if self.level_fn is not None else tuple()
|
||||
return self.aug_fn(img, *level_args, **self.kwargs)
|
||||
|
||||
|
||||
def auto_augment_policy_v0(hparams):
|
||||
# ImageNet v0 policy from TPU EfficientNet impl, cannot find a paper reference.
|
||||
policy = [
|
||||
[('Equalize', 0.8, 1), ('ShearY', 0.8, 4)],
|
||||
[('Color', 0.4, 9), ('Equalize', 0.6, 3)],
|
||||
[('Color', 0.4, 1), ('Rotate', 0.6, 8)],
|
||||
[('Solarize', 0.8, 3), ('Equalize', 0.4, 7)],
|
||||
[('Solarize', 0.4, 2), ('Solarize', 0.6, 2)],
|
||||
[('Color', 0.2, 0), ('Equalize', 0.8, 8)],
|
||||
[('Equalize', 0.4, 8), ('SolarizeAdd', 0.8, 3)],
|
||||
[('ShearX', 0.2, 9), ('Rotate', 0.6, 8)],
|
||||
[('Color', 0.6, 1), ('Equalize', 1.0, 2)],
|
||||
[('Invert', 0.4, 9), ('Rotate', 0.6, 0)],
|
||||
[('Equalize', 1.0, 9), ('ShearY', 0.6, 3)],
|
||||
[('Color', 0.4, 7), ('Equalize', 0.6, 0)],
|
||||
[('Posterize', 0.4, 6), ('AutoContrast', 0.4, 7)],
|
||||
[('Solarize', 0.6, 8), ('Color', 0.6, 9)],
|
||||
[('Solarize', 0.2, 4), ('Rotate', 0.8, 9)],
|
||||
[('Rotate', 1.0, 7), ('TranslateYRel', 0.8, 9)],
|
||||
[('ShearX', 0.0, 0), ('Solarize', 0.8, 4)],
|
||||
[('ShearY', 0.8, 0), ('Color', 0.6, 4)],
|
||||
[('Color', 1.0, 0), ('Rotate', 0.6, 2)],
|
||||
[('Equalize', 0.8, 4), ('Equalize', 0.0, 8)],
|
||||
[('Equalize', 1.0, 4), ('AutoContrast', 0.6, 2)],
|
||||
[('ShearY', 0.4, 7), ('SolarizeAdd', 0.6, 7)],
|
||||
[('Posterize', 0.8, 2), ('Solarize', 0.6, 10)
|
||||
], # This results in black image with Tpu posterize
|
||||
[('Solarize', 0.6, 8), ('Equalize', 0.6, 1)],
|
||||
[('Color', 0.8, 6), ('Rotate', 0.4, 5)],
|
||||
]
|
||||
pc = [[AugmentOp(*a, hparams=hparams) for a in sp] for sp in policy]
|
||||
return pc
|
||||
|
||||
|
||||
def auto_augment_policy_v0r(hparams):
|
||||
# ImageNet v0 policy from TPU EfficientNet impl, with variation of Posterize used
|
||||
# in Google research implementation (number of bits discarded increases with magnitude)
|
||||
policy = [
|
||||
[('Equalize', 0.8, 1), ('ShearY', 0.8, 4)],
|
||||
[('Color', 0.4, 9), ('Equalize', 0.6, 3)],
|
||||
[('Color', 0.4, 1), ('Rotate', 0.6, 8)],
|
||||
[('Solarize', 0.8, 3), ('Equalize', 0.4, 7)],
|
||||
[('Solarize', 0.4, 2), ('Solarize', 0.6, 2)],
|
||||
[('Color', 0.2, 0), ('Equalize', 0.8, 8)],
|
||||
[('Equalize', 0.4, 8), ('SolarizeAdd', 0.8, 3)],
|
||||
[('ShearX', 0.2, 9), ('Rotate', 0.6, 8)],
|
||||
[('Color', 0.6, 1), ('Equalize', 1.0, 2)],
|
||||
[('Invert', 0.4, 9), ('Rotate', 0.6, 0)],
|
||||
[('Equalize', 1.0, 9), ('ShearY', 0.6, 3)],
|
||||
[('Color', 0.4, 7), ('Equalize', 0.6, 0)],
|
||||
[('PosterizeIncreasing', 0.4, 6), ('AutoContrast', 0.4, 7)],
|
||||
[('Solarize', 0.6, 8), ('Color', 0.6, 9)],
|
||||
[('Solarize', 0.2, 4), ('Rotate', 0.8, 9)],
|
||||
[('Rotate', 1.0, 7), ('TranslateYRel', 0.8, 9)],
|
||||
[('ShearX', 0.0, 0), ('Solarize', 0.8, 4)],
|
||||
[('ShearY', 0.8, 0), ('Color', 0.6, 4)],
|
||||
[('Color', 1.0, 0), ('Rotate', 0.6, 2)],
|
||||
[('Equalize', 0.8, 4), ('Equalize', 0.0, 8)],
|
||||
[('Equalize', 1.0, 4), ('AutoContrast', 0.6, 2)],
|
||||
[('ShearY', 0.4, 7), ('SolarizeAdd', 0.6, 7)],
|
||||
[('PosterizeIncreasing', 0.8, 2), ('Solarize', 0.6, 10)],
|
||||
[('Solarize', 0.6, 8), ('Equalize', 0.6, 1)],
|
||||
[('Color', 0.8, 6), ('Rotate', 0.4, 5)],
|
||||
]
|
||||
pc = [[AugmentOp(*a, hparams=hparams) for a in sp] for sp in policy]
|
||||
return pc
|
||||
|
||||
|
||||
def auto_augment_policy_original(hparams):
|
||||
# ImageNet policy from https://arxiv.org/abs/1805.09501
|
||||
policy = [
|
||||
[('PosterizeOriginal', 0.4, 8), ('Rotate', 0.6, 9)],
|
||||
[('Solarize', 0.6, 5), ('AutoContrast', 0.6, 5)],
|
||||
[('Equalize', 0.8, 8), ('Equalize', 0.6, 3)],
|
||||
[('PosterizeOriginal', 0.6, 7), ('PosterizeOriginal', 0.6, 6)],
|
||||
[('Equalize', 0.4, 7), ('Solarize', 0.2, 4)],
|
||||
[('Equalize', 0.4, 4), ('Rotate', 0.8, 8)],
|
||||
[('Solarize', 0.6, 3), ('Equalize', 0.6, 7)],
|
||||
[('PosterizeOriginal', 0.8, 5), ('Equalize', 1.0, 2)],
|
||||
[('Rotate', 0.2, 3), ('Solarize', 0.6, 8)],
|
||||
[('Equalize', 0.6, 8), ('PosterizeOriginal', 0.4, 6)],
|
||||
[('Rotate', 0.8, 8), ('Color', 0.4, 0)],
|
||||
[('Rotate', 0.4, 9), ('Equalize', 0.6, 2)],
|
||||
[('Equalize', 0.0, 7), ('Equalize', 0.8, 8)],
|
||||
[('Invert', 0.6, 4), ('Equalize', 1.0, 8)],
|
||||
[('Color', 0.6, 4), ('Contrast', 1.0, 8)],
|
||||
[('Rotate', 0.8, 8), ('Color', 1.0, 2)],
|
||||
[('Color', 0.8, 8), ('Solarize', 0.8, 7)],
|
||||
[('Sharpness', 0.4, 7), ('Invert', 0.6, 8)],
|
||||
[('ShearX', 0.6, 5), ('Equalize', 1.0, 9)],
|
||||
[('Color', 0.4, 0), ('Equalize', 0.6, 3)],
|
||||
[('Equalize', 0.4, 7), ('Solarize', 0.2, 4)],
|
||||
[('Solarize', 0.6, 5), ('AutoContrast', 0.6, 5)],
|
||||
[('Invert', 0.6, 4), ('Equalize', 1.0, 8)],
|
||||
[('Color', 0.6, 4), ('Contrast', 1.0, 8)],
|
||||
[('Equalize', 0.8, 8), ('Equalize', 0.6, 3)],
|
||||
]
|
||||
pc = [[AugmentOp(*a, hparams=hparams) for a in sp] for sp in policy]
|
||||
return pc
|
||||
|
||||
|
||||
def auto_augment_policy_originalr(hparams):
|
||||
# ImageNet policy from https://arxiv.org/abs/1805.09501 with research posterize variation
|
||||
policy = [
|
||||
[('PosterizeIncreasing', 0.4, 8), ('Rotate', 0.6, 9)],
|
||||
[('Solarize', 0.6, 5), ('AutoContrast', 0.6, 5)],
|
||||
[('Equalize', 0.8, 8), ('Equalize', 0.6, 3)],
|
||||
[('PosterizeIncreasing', 0.6, 7), ('PosterizeIncreasing', 0.6, 6)],
|
||||
[('Equalize', 0.4, 7), ('Solarize', 0.2, 4)],
|
||||
[('Equalize', 0.4, 4), ('Rotate', 0.8, 8)],
|
||||
[('Solarize', 0.6, 3), ('Equalize', 0.6, 7)],
|
||||
[('PosterizeIncreasing', 0.8, 5), ('Equalize', 1.0, 2)],
|
||||
[('Rotate', 0.2, 3), ('Solarize', 0.6, 8)],
|
||||
[('Equalize', 0.6, 8), ('PosterizeIncreasing', 0.4, 6)],
|
||||
[('Rotate', 0.8, 8), ('Color', 0.4, 0)],
|
||||
[('Rotate', 0.4, 9), ('Equalize', 0.6, 2)],
|
||||
[('Equalize', 0.0, 7), ('Equalize', 0.8, 8)],
|
||||
[('Invert', 0.6, 4), ('Equalize', 1.0, 8)],
|
||||
[('Color', 0.6, 4), ('Contrast', 1.0, 8)],
|
||||
[('Rotate', 0.8, 8), ('Color', 1.0, 2)],
|
||||
[('Color', 0.8, 8), ('Solarize', 0.8, 7)],
|
||||
[('Sharpness', 0.4, 7), ('Invert', 0.6, 8)],
|
||||
[('ShearX', 0.6, 5), ('Equalize', 1.0, 9)],
|
||||
[('Color', 0.4, 0), ('Equalize', 0.6, 3)],
|
||||
[('Equalize', 0.4, 7), ('Solarize', 0.2, 4)],
|
||||
[('Solarize', 0.6, 5), ('AutoContrast', 0.6, 5)],
|
||||
[('Invert', 0.6, 4), ('Equalize', 1.0, 8)],
|
||||
[('Color', 0.6, 4), ('Contrast', 1.0, 8)],
|
||||
[('Equalize', 0.8, 8), ('Equalize', 0.6, 3)],
|
||||
]
|
||||
pc = [[AugmentOp(*a, hparams=hparams) for a in sp] for sp in policy]
|
||||
return pc
|
||||
|
||||
|
||||
def auto_augment_policy(name='v0', hparams=None):
|
||||
hparams = hparams or _HPARAMS_DEFAULT
|
||||
if name == 'original':
|
||||
return auto_augment_policy_original(hparams)
|
||||
elif name == 'originalr':
|
||||
return auto_augment_policy_originalr(hparams)
|
||||
elif name == 'v0':
|
||||
return auto_augment_policy_v0(hparams)
|
||||
elif name == 'v0r':
|
||||
return auto_augment_policy_v0r(hparams)
|
||||
else:
|
||||
assert False, 'Unknown AA policy (%s)' % name
|
||||
|
||||
|
||||
class AutoAugment(object):
|
||||
def __init__(self, policy):
|
||||
self.policy = policy
|
||||
|
||||
def __call__(self, img):
|
||||
sub_policy = random.choice(self.policy)
|
||||
for op in sub_policy:
|
||||
img = op(img)
|
||||
return img
|
||||
|
||||
|
||||
def auto_augment_transform(config_str, hparams):
|
||||
"""
|
||||
Create a AutoAugment transform
|
||||
|
||||
:param config_str: String defining configuration of auto augmentation. Consists of multiple sections separated by
|
||||
dashes ('-'). The first section defines the AutoAugment policy (one of 'v0', 'v0r', 'original', 'originalr').
|
||||
The remaining sections, not order sepecific determine
|
||||
'mstd' - float std deviation of magnitude noise applied
|
||||
Ex 'original-mstd0.5' results in AutoAugment with original policy, magnitude_std 0.5
|
||||
|
||||
:param hparams: Other hparams (kwargs) for the AutoAugmentation scheme
|
||||
|
||||
:return: A callable Transform Op
|
||||
"""
|
||||
config = config_str.split('-')
|
||||
policy_name = config[0]
|
||||
config = config[1:]
|
||||
for c in config:
|
||||
cs = re.split(r'(\d.*)', c)
|
||||
if len(cs) < 2:
|
||||
continue
|
||||
key, val = cs[:2]
|
||||
if key == 'mstd':
|
||||
# noise param injected via hparams for now
|
||||
hparams.setdefault('magnitude_std', float(val))
|
||||
else:
|
||||
assert False, 'Unknown AutoAugment config section'
|
||||
aa_policy = auto_augment_policy(policy_name, hparams=hparams)
|
||||
return AutoAugment(aa_policy)
|
||||
|
||||
|
||||
_RAND_TRANSFORMS = [
|
||||
'AutoContrast',
|
||||
'Equalize',
|
||||
'Invert',
|
||||
'Rotate',
|
||||
'Posterize',
|
||||
'Solarize',
|
||||
'SolarizeAdd',
|
||||
'Color',
|
||||
'Contrast',
|
||||
'Brightness',
|
||||
'Sharpness',
|
||||
'ShearX',
|
||||
'ShearY',
|
||||
'TranslateXRel',
|
||||
'TranslateYRel',
|
||||
#'Cutout' # NOTE I've implement this as random erasing separately
|
||||
]
|
||||
|
||||
_RAND_INCREASING_TRANSFORMS = [
|
||||
'AutoContrast',
|
||||
'Equalize',
|
||||
'Invert',
|
||||
'Rotate',
|
||||
'PosterizeIncreasing',
|
||||
'SolarizeIncreasing',
|
||||
'SolarizeAdd',
|
||||
'ColorIncreasing',
|
||||
'ContrastIncreasing',
|
||||
'BrightnessIncreasing',
|
||||
'SharpnessIncreasing',
|
||||
'ShearX',
|
||||
'ShearY',
|
||||
'TranslateXRel',
|
||||
'TranslateYRel',
|
||||
#'Cutout' # NOTE I've implement this as random erasing separately
|
||||
]
|
||||
|
||||
# These experimental weights are based loosely on the relative improvements mentioned in paper.
|
||||
# They may not result in increased performance, but could likely be tuned to so.
|
||||
_RAND_CHOICE_WEIGHTS_0 = {
|
||||
'Rotate': 0.3,
|
||||
'ShearX': 0.2,
|
||||
'ShearY': 0.2,
|
||||
'TranslateXRel': 0.1,
|
||||
'TranslateYRel': 0.1,
|
||||
'Color': .025,
|
||||
'Sharpness': 0.025,
|
||||
'AutoContrast': 0.025,
|
||||
'Solarize': .005,
|
||||
'SolarizeAdd': .005,
|
||||
'Contrast': .005,
|
||||
'Brightness': .005,
|
||||
'Equalize': .005,
|
||||
'Posterize': 0,
|
||||
'Invert': 0,
|
||||
}
|
||||
|
||||
|
||||
def _select_rand_weights(weight_idx=0, transforms=None):
|
||||
transforms = transforms or _RAND_TRANSFORMS
|
||||
assert weight_idx == 0 # only one set of weights currently
|
||||
rand_weights = _RAND_CHOICE_WEIGHTS_0
|
||||
probs = [rand_weights[k] for k in transforms]
|
||||
probs /= np.sum(probs)
|
||||
return probs
|
||||
|
||||
|
||||
def rand_augment_ops(magnitude=10, hparams=None, transforms=None):
|
||||
hparams = hparams or _HPARAMS_DEFAULT
|
||||
transforms = transforms or _RAND_TRANSFORMS
|
||||
return [
|
||||
AugmentOp(
|
||||
name, prob=0.5, magnitude=magnitude, hparams=hparams)
|
||||
for name in transforms
|
||||
]
|
||||
|
||||
|
||||
class RandAugment(object):
|
||||
def __init__(self, ops, num_layers=2, choice_weights=None):
|
||||
self.ops = ops
|
||||
self.num_layers = num_layers
|
||||
self.choice_weights = choice_weights
|
||||
|
||||
def __call__(self, img):
|
||||
# no replacement when using weighted choice
|
||||
ops = np.random.choice(
|
||||
self.ops,
|
||||
self.num_layers,
|
||||
replace=self.choice_weights is None,
|
||||
p=self.choice_weights)
|
||||
for op in ops:
|
||||
img = op(img)
|
||||
return img
|
||||
|
||||
|
||||
def rand_augment_transform(config_str, hparams):
|
||||
"""
|
||||
Create a RandAugment transform
|
||||
|
||||
:param config_str: String defining configuration of random augmentation. Consists of multiple sections separated by
|
||||
dashes ('-'). The first section defines the specific variant of rand augment (currently only 'rand'). The remaining
|
||||
sections, not order sepecific determine
|
||||
'm' - integer magnitude of rand augment
|
||||
'n' - integer num layers (number of transform ops selected per image)
|
||||
'w' - integer probabiliy weight index (index of a set of weights to influence choice of op)
|
||||
'mstd' - float std deviation of magnitude noise applied
|
||||
'inc' - integer (bool), use augmentations that increase in severity with magnitude (default: 0)
|
||||
Ex 'rand-m9-n3-mstd0.5' results in RandAugment with magnitude 9, num_layers 3, magnitude_std 0.5
|
||||
'rand-mstd1-w0' results in magnitude_std 1.0, weights 0, default magnitude of 10 and num_layers 2
|
||||
|
||||
:param hparams: Other hparams (kwargs) for the RandAugmentation scheme
|
||||
|
||||
:return: A callable Transform Op
|
||||
"""
|
||||
magnitude = _MAX_LEVEL # default to _MAX_LEVEL for magnitude (currently 10)
|
||||
num_layers = 2 # default to 2 ops per image
|
||||
weight_idx = None # default to no probability weights for op choice
|
||||
transforms = _RAND_TRANSFORMS
|
||||
config = config_str.split('-')
|
||||
assert config[0] == 'rand'
|
||||
config = config[1:]
|
||||
for c in config:
|
||||
cs = re.split(r'(\d.*)', c)
|
||||
if len(cs) < 2:
|
||||
continue
|
||||
key, val = cs[:2]
|
||||
if key == 'mstd':
|
||||
# noise param injected via hparams for now
|
||||
hparams.setdefault('magnitude_std', float(val))
|
||||
elif key == 'inc':
|
||||
if bool(val):
|
||||
transforms = _RAND_INCREASING_TRANSFORMS
|
||||
elif key == 'm':
|
||||
magnitude = int(val)
|
||||
elif key == 'n':
|
||||
num_layers = int(val)
|
||||
elif key == 'w':
|
||||
weight_idx = int(val)
|
||||
else:
|
||||
assert False, 'Unknown RandAugment config section'
|
||||
ra_ops = rand_augment_ops(
|
||||
magnitude=magnitude, hparams=hparams, transforms=transforms)
|
||||
choice_weights = None if weight_idx is None else _select_rand_weights(
|
||||
weight_idx)
|
||||
return RandAugment(ra_ops, num_layers, choice_weights=choice_weights)
|
||||
|
||||
|
||||
_AUGMIX_TRANSFORMS = [
|
||||
'AutoContrast',
|
||||
'ColorIncreasing', # not in paper
|
||||
'ContrastIncreasing', # not in paper
|
||||
'BrightnessIncreasing', # not in paper
|
||||
'SharpnessIncreasing', # not in paper
|
||||
'Equalize',
|
||||
'Rotate',
|
||||
'PosterizeIncreasing',
|
||||
'SolarizeIncreasing',
|
||||
'ShearX',
|
||||
'ShearY',
|
||||
'TranslateXRel',
|
||||
'TranslateYRel',
|
||||
]
|
||||
|
||||
|
||||
def augmix_ops(magnitude=10, hparams=None, transforms=None):
|
||||
hparams = hparams or _HPARAMS_DEFAULT
|
||||
transforms = transforms or _AUGMIX_TRANSFORMS
|
||||
return [
|
||||
AugmentOp(
|
||||
name, prob=1.0, magnitude=magnitude, hparams=hparams)
|
||||
for name in transforms
|
||||
]
|
||||
|
||||
|
||||
class AugMixAugment(object):
|
||||
""" AugMix Transform
|
||||
Adapted and improved from impl here: https://github.com/google-research/augmix/blob/master/imagenet.py
|
||||
From paper: 'AugMix: A Simple Data Processing Method to Improve Robustness and Uncertainty -
|
||||
https://arxiv.org/abs/1912.02781
|
||||
"""
|
||||
|
||||
def __init__(self, ops, alpha=1., width=3, depth=-1, blended=False):
|
||||
self.ops = ops
|
||||
self.alpha = alpha
|
||||
self.width = width
|
||||
self.depth = depth
|
||||
self.blended = blended # blended mode is faster but not well tested
|
||||
|
||||
def _calc_blended_weights(self, ws, m):
|
||||
ws = ws * m
|
||||
cump = 1.
|
||||
rws = []
|
||||
for w in ws[::-1]:
|
||||
alpha = w / cump
|
||||
cump *= (1 - alpha)
|
||||
rws.append(alpha)
|
||||
return np.array(rws[::-1], dtype=np.float32)
|
||||
|
||||
def _apply_blended(self, img, mixing_weights, m):
|
||||
# This is my first crack and implementing a slightly faster mixed augmentation. Instead
|
||||
# of accumulating the mix for each chain in a Numpy array and then blending with original,
|
||||
# it recomputes the blending coefficients and applies one PIL image blend per chain.
|
||||
# TODO the results appear in the right ballpark but they differ by more than rounding.
|
||||
img_orig = img.copy()
|
||||
ws = self._calc_blended_weights(mixing_weights, m)
|
||||
for w in ws:
|
||||
depth = self.depth if self.depth > 0 else np.random.randint(1, 4)
|
||||
ops = np.random.choice(self.ops, depth, replace=True)
|
||||
img_aug = img_orig # no ops are in-place, deep copy not necessary
|
||||
for op in ops:
|
||||
img_aug = op(img_aug)
|
||||
img = Image.blend(img, img_aug, w)
|
||||
return img
|
||||
|
||||
def _apply_basic(self, img, mixing_weights, m):
|
||||
# This is a literal adaptation of the paper/official implementation without normalizations and
|
||||
# PIL <-> Numpy conversions between every op. It is still quite CPU compute heavy compared to the
|
||||
# typical augmentation transforms, could use a GPU / Kornia implementation.
|
||||
img_shape = img.size[0], img.size[1], len(img.getbands())
|
||||
mixed = np.zeros(img_shape, dtype=np.float32)
|
||||
for mw in mixing_weights:
|
||||
depth = self.depth if self.depth > 0 else np.random.randint(1, 4)
|
||||
ops = np.random.choice(self.ops, depth, replace=True)
|
||||
img_aug = img # no ops are in-place, deep copy not necessary
|
||||
for op in ops:
|
||||
img_aug = op(img_aug)
|
||||
mixed += mw * np.asarray(img_aug, dtype=np.float32)
|
||||
np.clip(mixed, 0, 255., out=mixed)
|
||||
mixed = Image.fromarray(mixed.astype(np.uint8))
|
||||
return Image.blend(img, mixed, m)
|
||||
|
||||
def __call__(self, img):
|
||||
mixing_weights = np.float32(
|
||||
np.random.dirichlet([self.alpha] * self.width))
|
||||
m = np.float32(np.random.beta(self.alpha, self.alpha))
|
||||
if self.blended:
|
||||
mixed = self._apply_blended(img, mixing_weights, m)
|
||||
else:
|
||||
mixed = self._apply_basic(img, mixing_weights, m)
|
||||
return mixed
|
||||
|
||||
|
||||
def augment_and_mix_transform(config_str, hparams):
|
||||
""" Create AugMix transform
|
||||
|
||||
:param config_str: String defining configuration of random augmentation. Consists of multiple sections separated by
|
||||
dashes ('-'). The first section defines the specific variant of rand augment (currently only 'rand'). The remaining
|
||||
sections, not order sepecific determine
|
||||
'm' - integer magnitude (severity) of augmentation mix (default: 3)
|
||||
'w' - integer width of augmentation chain (default: 3)
|
||||
'd' - integer depth of augmentation chain (-1 is random [1, 3], default: -1)
|
||||
'b' - integer (bool), blend each branch of chain into end result without a final blend, less CPU (default: 0)
|
||||
'mstd' - float std deviation of magnitude noise applied (default: 0)
|
||||
Ex 'augmix-m5-w4-d2' results in AugMix with severity 5, chain width 4, chain depth 2
|
||||
|
||||
:param hparams: Other hparams (kwargs) for the Augmentation transforms
|
||||
|
||||
:return: A callable Transform Op
|
||||
"""
|
||||
magnitude = 3
|
||||
width = 3
|
||||
depth = -1
|
||||
alpha = 1.
|
||||
blended = False
|
||||
config = config_str.split('-')
|
||||
assert config[0] == 'augmix'
|
||||
config = config[1:]
|
||||
for c in config:
|
||||
cs = re.split(r'(\d.*)', c)
|
||||
if len(cs) < 2:
|
||||
continue
|
||||
key, val = cs[:2]
|
||||
if key == 'mstd':
|
||||
# noise param injected via hparams for now
|
||||
hparams.setdefault('magnitude_std', float(val))
|
||||
elif key == 'm':
|
||||
magnitude = int(val)
|
||||
elif key == 'w':
|
||||
width = int(val)
|
||||
elif key == 'd':
|
||||
depth = int(val)
|
||||
elif key == 'a':
|
||||
alpha = float(val)
|
||||
elif key == 'b':
|
||||
blended = bool(val)
|
||||
else:
|
||||
assert False, 'Unknown AugMix config section'
|
||||
ops = augmix_ops(magnitude=magnitude, hparams=hparams)
|
||||
return AugMixAugment(
|
||||
ops, alpha=alpha, width=width, depth=depth, blended=blended)
|
||||
|
||||
|
||||
class RawTimmAutoAugment(object):
|
||||
"""TimmAutoAugment API for PaddleClas."""
|
||||
|
||||
def __init__(self,
|
||||
config_str="rand-m9-mstd0.5-inc1",
|
||||
interpolation="bicubic",
|
||||
img_size=224,
|
||||
mean=IMAGENET_DEFAULT_MEAN):
|
||||
if isinstance(img_size, (tuple, list)):
|
||||
img_size_min = min(img_size)
|
||||
else:
|
||||
img_size_min = img_size
|
||||
|
||||
aa_params = dict(
|
||||
translate_const=int(img_size_min * 0.45),
|
||||
img_mean=tuple([min(255, round(255 * x)) for x in mean]), )
|
||||
if interpolation and interpolation != 'random':
|
||||
aa_params['interpolation'] = _pil_interp(interpolation)
|
||||
if config_str.startswith('rand'):
|
||||
self.augment_func = rand_augment_transform(config_str, aa_params)
|
||||
elif config_str.startswith('augmix'):
|
||||
aa_params['translate_pct'] = 0.3
|
||||
self.augment_func = augment_and_mix_transform(config_str,
|
||||
aa_params)
|
||||
elif config_str.startswith('auto'):
|
||||
self.augment_func = auto_augment_transform(config_str, aa_params)
|
||||
else:
|
||||
raise Exception(
|
||||
"ConfigError: The TimmAutoAugment Op only support RandAugment, AutoAugment, AugMix, and the config_str only starts with \"rand\", \"augmix\", \"auto\"."
|
||||
)
|
||||
|
||||
def __call__(self, img):
|
||||
return self.augment_func(img)
|
Loading…
x
Reference in New Issue
Block a user