commit
2595af2b1e
|
@ -0,0 +1,268 @@
|
|||
from functools import partial
|
||||
import six
|
||||
import math
|
||||
import random
|
||||
import cv2
|
||||
import numpy as np
|
||||
import importlib
|
||||
from PIL import Image
|
||||
|
||||
from utils import logger
|
||||
|
||||
|
||||
class PreProcesser(object):
|
||||
def __init__(self, config):
|
||||
"""Image PreProcesser
|
||||
|
||||
Args:
|
||||
config (list): A list consisting of Dict object that describe an image processer operator.
|
||||
"""
|
||||
super().__init__()
|
||||
self.ops = self.create_ops(config)
|
||||
|
||||
def create_ops(self, config):
|
||||
if not isinstance(config, list):
|
||||
msg = "The preprocess config should be a list consisting of Dict object."
|
||||
logger.error(msg)
|
||||
raise Exception(msg)
|
||||
mod = importlib.import_module(__name__)
|
||||
ops = []
|
||||
for op_config in config:
|
||||
name = list(op_config)[0]
|
||||
param = {} if op_config[name] is None else op_config[name]
|
||||
op = getattr(mod, name)(**param)
|
||||
ops.append(op)
|
||||
return ops
|
||||
|
||||
def __call__(self, img, img_info=None):
|
||||
if img_info:
|
||||
for op in self.ops:
|
||||
img, img_info = op(img, img_info)
|
||||
return img, img_info
|
||||
else:
|
||||
for op in self.ops:
|
||||
img = op(img)
|
||||
return img
|
||||
|
||||
|
||||
class DecodeImage(object):
|
||||
""" decode image """
|
||||
|
||||
def __init__(self, to_rgb=True, to_np=False, channel_first=False):
|
||||
self.to_rgb = to_rgb
|
||||
self.to_np = to_np # to numpy
|
||||
self.channel_first = channel_first # only enabled when to_np is True
|
||||
|
||||
def __call__(self, img, img_info=None):
|
||||
if six.PY2:
|
||||
assert type(img) is str and len(
|
||||
img) > 0, "invalid input 'img' in DecodeImage"
|
||||
else:
|
||||
assert type(img) is bytes and len(
|
||||
img) > 0, "invalid input 'img' in DecodeImage"
|
||||
data = np.frombuffer(img, dtype='uint8')
|
||||
img = cv2.imdecode(data, 1)
|
||||
if self.to_rgb:
|
||||
assert img.shape[2] == 3, 'invalid shape of image[%s]' % (
|
||||
img.shape)
|
||||
img = img[:, :, ::-1]
|
||||
|
||||
if self.channel_first:
|
||||
img = img.transpose((2, 0, 1))
|
||||
|
||||
if img_info:
|
||||
img_info["im_shape"] = np.array(img.shape[:2], dtype=np.float32)
|
||||
img_info["scale_factor"] = np.array([1., 1.], dtype=np.float32)
|
||||
return img, img_info
|
||||
else:
|
||||
return img
|
||||
|
||||
|
||||
class UnifiedResize(object):
|
||||
def __init__(self, interpolation=None, backend="cv2"):
|
||||
_cv2_interp_from_str = {
|
||||
'nearest': cv2.INTER_NEAREST,
|
||||
'bilinear': cv2.INTER_LINEAR,
|
||||
'area': cv2.INTER_AREA,
|
||||
'bicubic': cv2.INTER_CUBIC,
|
||||
'lanczos': cv2.INTER_LANCZOS4
|
||||
}
|
||||
_pil_interp_from_str = {
|
||||
'nearest': Image.NEAREST,
|
||||
'bilinear': Image.BILINEAR,
|
||||
'bicubic': Image.BICUBIC,
|
||||
'box': Image.BOX,
|
||||
'lanczos': Image.LANCZOS,
|
||||
'hamming': Image.HAMMING
|
||||
}
|
||||
|
||||
def _pil_resize(src, size, resample):
|
||||
pil_img = Image.fromarray(src)
|
||||
pil_img = pil_img.resize(size, resample)
|
||||
return np.asarray(pil_img)
|
||||
|
||||
if backend.lower() == "cv2":
|
||||
if isinstance(interpolation, str):
|
||||
interpolation = _cv2_interp_from_str[interpolation.lower()]
|
||||
# compatible with opencv < version 4.4.0
|
||||
elif interpolation is None:
|
||||
interpolation = cv2.INTER_LINEAR
|
||||
self.resize_func = partial(cv2.resize, interpolation=interpolation)
|
||||
elif backend.lower() == "pil":
|
||||
if isinstance(interpolation, str):
|
||||
interpolation = _pil_interp_from_str[interpolation.lower()]
|
||||
self.resize_func = partial(_pil_resize, resample=interpolation)
|
||||
else:
|
||||
logger.warning(
|
||||
f"The backend of Resize only support \"cv2\" or \"PIL\". \"f{backend}\" is unavailable. Use \"cv2\" instead."
|
||||
)
|
||||
self.resize_func = cv2.resize
|
||||
|
||||
def __call__(self, src, size):
|
||||
return self.resize_func(src, size)
|
||||
|
||||
|
||||
class ResizeImage(object):
|
||||
""" resize image """
|
||||
|
||||
def __init__(self,
|
||||
size=None,
|
||||
resize_short=None,
|
||||
interpolation=None,
|
||||
backend="cv2"):
|
||||
if resize_short is not None and resize_short > 0:
|
||||
self.resize_short = resize_short
|
||||
self.w = None
|
||||
self.h = None
|
||||
elif size is not None:
|
||||
self.resize_short = None
|
||||
self.w = size if type(size) is int else size[0]
|
||||
self.h = size if type(size) is int else size[1]
|
||||
else:
|
||||
raise Exception("invalid params for ReisizeImage for '\
|
||||
'both 'size' and 'resize_short' are None")
|
||||
|
||||
self._resize_func = UnifiedResize(
|
||||
interpolation=interpolation, backend=backend)
|
||||
|
||||
def __call__(self, img, img_info=None):
|
||||
img_h, img_w = img.shape[:2]
|
||||
if self.resize_short is not None:
|
||||
percent = float(self.resize_short) / min(img_w, img_h)
|
||||
w = int(round(img_w * percent))
|
||||
h = int(round(img_h * percent))
|
||||
else:
|
||||
w = self.w
|
||||
h = self.h
|
||||
img = self._resize_func(img, (w, h))
|
||||
if img_info:
|
||||
img_info["input_shape"] = img.shape[:2]
|
||||
img_info["scale_factor"] = np.array(
|
||||
[img.shape[0] / img_h, img.shape[1] / img_w]).astype("float32")
|
||||
return img, img_info
|
||||
else:
|
||||
return img
|
||||
|
||||
|
||||
class CropImage(object):
|
||||
""" crop image """
|
||||
|
||||
def __init__(self, size):
|
||||
if type(size) is int:
|
||||
self.size = (size, size)
|
||||
else:
|
||||
self.size = size # (h, w)
|
||||
|
||||
def __call__(self, img, img_info=None):
|
||||
w, h = self.size
|
||||
img_h, img_w = img.shape[:2]
|
||||
|
||||
if img_h < h or img_w < w:
|
||||
raise Exception(
|
||||
f"The size({h}, {w}) of CropImage must be greater than size({img_h}, {img_w}) of image. Please check image original size and size of ResizeImage if used."
|
||||
)
|
||||
|
||||
w_start = (img_w - w) // 2
|
||||
h_start = (img_h - h) // 2
|
||||
|
||||
w_end = w_start + w
|
||||
h_end = h_start + h
|
||||
img = img[h_start:h_end, w_start:w_end, :]
|
||||
if img_info:
|
||||
img_info["input_shape"] = img.shape[:2]
|
||||
# TODO(gaotingquan): im_shape is needed to update?
|
||||
img_info["im_shape"] = np.array(img.shape[:2], dtype=np.float32)
|
||||
return img, img_info
|
||||
else:
|
||||
return img
|
||||
|
||||
|
||||
class NormalizeImage(object):
|
||||
""" normalize image such as substract mean, divide std
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
scale=None,
|
||||
mean=None,
|
||||
std=None,
|
||||
order='chw',
|
||||
output_fp16=False,
|
||||
channel_num=3):
|
||||
if isinstance(scale, str):
|
||||
scale = eval(scale)
|
||||
assert channel_num in [
|
||||
3, 4
|
||||
], "channel number of input image should be set to 3 or 4."
|
||||
self.channel_num = channel_num
|
||||
self.output_dtype = 'float16' if output_fp16 else 'float32'
|
||||
self.scale = np.float32(scale if scale is not None else 1.0 / 255.0)
|
||||
self.order = order
|
||||
mean = mean if mean is not None else [0.485, 0.456, 0.406]
|
||||
std = std if std is not None else [0.229, 0.224, 0.225]
|
||||
|
||||
shape = (3, 1, 1) if self.order == 'chw' else (1, 1, 3)
|
||||
self.mean = np.array(mean).reshape(shape).astype('float32')
|
||||
self.std = np.array(std).reshape(shape).astype('float32')
|
||||
|
||||
def __call__(self, img, img_info=None):
|
||||
if isinstance(img, Image.Image):
|
||||
img = np.array(img)
|
||||
|
||||
assert isinstance(img,
|
||||
np.ndarray), "invalid input 'img' in NormalizeImage"
|
||||
|
||||
img = (img.astype('float32') * self.scale - self.mean) / self.std
|
||||
|
||||
if self.channel_num == 4:
|
||||
img_h = img.shape[1] if self.order == 'chw' else img.shape[0]
|
||||
img_w = img.shape[2] if self.order == 'chw' else img.shape[1]
|
||||
pad_zeros = np.zeros(
|
||||
(1, img_h, img_w)) if self.order == 'chw' else np.zeros(
|
||||
(img_h, img_w, 1))
|
||||
img = (np.concatenate(
|
||||
(img, pad_zeros), axis=0)
|
||||
if self.order == 'chw' else np.concatenate(
|
||||
(img, pad_zeros), axis=2))
|
||||
img = img.astype(self.output_dtype)
|
||||
if img_info:
|
||||
return img, img_info
|
||||
else:
|
||||
return img
|
||||
|
||||
|
||||
class ToCHWImage(object):
|
||||
""" convert hwc image to chw image
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
def __call__(self, img, img_info=None):
|
||||
if isinstance(img, Image.Image):
|
||||
img = np.array(img)
|
||||
|
||||
img = img.transpose((2, 0, 1))
|
||||
if img_info:
|
||||
return img, img_info
|
||||
else:
|
||||
return img
|
Loading…
Reference in New Issue