modify swinv2
parent
7d573e5dec
commit
272e75365b
|
@ -72,7 +72,7 @@ SwinTransformerV2 在 SwinTransformer 的基础上进行改进,可处理大尺
|
|||
|
||||
## 3. 模型训练、评估和预测
|
||||
|
||||
此部分内容包括训练环境配置、ImageNet数据的准备、SwinTransformer 在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/SwinTransformer/` 中提供了 SwinTransformer 的训练配置,可以通过如下脚本启动训练:此部分内容可以参考[ResNet50 模型训练、评估和预测](./ResNet.md#3)。
|
||||
此部分内容包括训练环境配置、ImageNet数据的准备、SwinTransformerV2 在 ImageNet 上的训练、评估、预测等内容。在 `ppcls/configs/ImageNet/SwinTransformerV2/` 中提供了 SwinTransformerV2 的训练配置,可以通过如下脚本启动训练:此部分内容可以参考[ResNet50 模型训练、评估和预测](./ResNet.md#3)。
|
||||
|
||||
**备注:** 由于 SwinTransformer 系列模型默认使用的 GPU 数量为 8 个,所以在训练时,需要指定8个GPU,如`python3 -m paddle.distributed.launch --gpus="0,1,2,3,4,5,6,7" tools/train.py -c xxx.yaml`, 如果使用 4 个 GPU 训练,默认学习率需要减小一半,精度可能有损。
|
||||
|
||||
|
|
|
@ -54,7 +54,7 @@ from .model_zoo.regnet import RegNetX_200MF, RegNetX_400MF, RegNetX_600MF, RegNe
|
|||
from .model_zoo.vision_transformer import ViT_small_patch16_224, ViT_base_patch16_224, ViT_base_patch16_384, ViT_base_patch32_384, ViT_large_patch16_224, ViT_large_patch16_384, ViT_large_patch32_384
|
||||
from .model_zoo.distilled_vision_transformer import DeiT_tiny_patch16_224, DeiT_small_patch16_224, DeiT_base_patch16_224, DeiT_tiny_distilled_patch16_224, DeiT_small_distilled_patch16_224, DeiT_base_distilled_patch16_224, DeiT_base_patch16_384, DeiT_base_distilled_patch16_384
|
||||
from .legendary_models.swin_transformer import SwinTransformer_tiny_patch4_window7_224, SwinTransformer_small_patch4_window7_224, SwinTransformer_base_patch4_window7_224, SwinTransformer_base_patch4_window12_384, SwinTransformer_large_patch4_window7_224, SwinTransformer_large_patch4_window12_384
|
||||
from .model_zoo.swin_transformerv2 import SwinTransformerV2_tiny_patch4_window8_256, SwinTransformerV2_small_patch4_window8_256, SwinTransformerV2_base_patch4_window8_256, SwinTransformerV2_tiny_patch4_window16_256, SwinTransformerV2_small_patch4_window16_256, SwinTransformerV2_base_patch4_window16_256, SwinTransformerV2_base_patch4_window12to16_256, SwinTransformerV2_base_patch4_window24_384, SwinTransformerV2_large_patch4_window16_256, SwinTransformerV2_large_patch4_window24_384
|
||||
from .model_zoo.swin_transformer_v2 import SwinTransformerV2_tiny_patch4_window8_256, SwinTransformerV2_small_patch4_window8_256, SwinTransformerV2_base_patch4_window8_256, SwinTransformerV2_tiny_patch4_window16_256, SwinTransformerV2_small_patch4_window16_256, SwinTransformerV2_base_patch4_window16_256, SwinTransformerV2_base_patch4_window24_384, SwinTransformerV2_large_patch4_window16_256, SwinTransformerV2_large_patch4_window24_384
|
||||
from .model_zoo.cswin_transformer import CSWinTransformer_tiny_224, CSWinTransformer_small_224, CSWinTransformer_base_224, CSWinTransformer_large_224, CSWinTransformer_base_384, CSWinTransformer_large_384
|
||||
from .model_zoo.mixnet import MixNet_S, MixNet_M, MixNet_L
|
||||
from .model_zoo.rexnet import ReXNet_1_0, ReXNet_1_3, ReXNet_1_5, ReXNet_2_0, ReXNet_3_0
|
||||
|
|
|
@ -0,0 +1,988 @@
|
|||
# copyright (c) 2023 PaddlePaddle Authors. All Rights Reserve.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# Code was based on https://github.com/microsoft/Swin-Transformer
|
||||
# reference: https://arxiv.org/abs/2111.09883
|
||||
|
||||
import paddle
|
||||
import paddle.nn as nn
|
||||
import paddle.nn.functional as F
|
||||
from paddle.nn.initializer import TruncatedNormal, Constant, Normal
|
||||
import numpy as np
|
||||
import math
|
||||
|
||||
from .vision_transformer import trunc_normal_, zeros_, ones_, to_2tuple, DropPath, Identity
|
||||
from ..base.theseus_layer import TheseusLayer
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"SwinTransformerV2_tiny_patch4_window8_256":
|
||||
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SwinTransformerV2_tiny_patch4_window8_256_pretrained.pdparams",
|
||||
"SwinTransformerV2_tiny_patch4_window16_256":
|
||||
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SwinTransformerV2_tiny_patch4_window16_256_pretrained.pdparams",
|
||||
"SwinTransformerV2_small_patch4_window8_256":
|
||||
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SwinTransformerV2_small_patch4_window8_256_pretrained.pdparams",
|
||||
"SwinTransformerV2_small_patch4_window16_256":
|
||||
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SwinTransformerV2_small_patch4_window16_256_pretrained.pdparams",
|
||||
"SwinTransformerV2_base_patch4_window8_256":
|
||||
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SwinTransformerV2_base_patch4_window8_256_pretrained.pdparams",
|
||||
"SwinTransformerV2_base_patch4_window16_256":
|
||||
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SwinTransformerV2_base_patch4_window16_256_pretrained.pdparams",
|
||||
"SwinTransformerV2_base_patch4_window24_384":
|
||||
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SwinTransformerV2_base_patch4_window24_384_pretrained.pdparams",
|
||||
"SwinTransformerV2_large_patch4_window16_256":
|
||||
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SwinTransformerV2_large_patch4_window16_256_pretrained.pdparams",
|
||||
"SwinTransformerV2_large_patch4_window24_384":
|
||||
"https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/legendary_models/SwinTransformerV2_large_patch4_window24_384_pretrained.pdparams"
|
||||
}
|
||||
|
||||
__all__ = list(MODEL_URLS.keys())
|
||||
|
||||
|
||||
class Mlp(nn.Layer):
|
||||
def __init__(self,
|
||||
in_features,
|
||||
hidden_features=None,
|
||||
out_features=None,
|
||||
act_layer=nn.GELU,
|
||||
drop=0.):
|
||||
super().__init__()
|
||||
out_features = out_features or in_features
|
||||
hidden_features = hidden_features or in_features
|
||||
self.fc1 = nn.Linear(in_features, hidden_features)
|
||||
self.act = act_layer()
|
||||
self.fc2 = nn.Linear(hidden_features, out_features)
|
||||
self.drop = nn.Dropout(drop)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.fc1(x)
|
||||
x = self.act(x)
|
||||
x = self.drop(x)
|
||||
x = self.fc2(x)
|
||||
x = self.drop(x)
|
||||
return x
|
||||
|
||||
|
||||
def masked_fill(x, mask, value):
|
||||
y = paddle.full(x.shape, value, x.dtype)
|
||||
return paddle.where(mask, y, x)
|
||||
|
||||
|
||||
def window_partition(x, window_size):
|
||||
"""
|
||||
Args:
|
||||
x: (B, H, W, C)
|
||||
window_size (int): window size
|
||||
|
||||
Returns:
|
||||
windows: (num_windows*B, window_size, window_size, C)
|
||||
"""
|
||||
B, H, W, C = x.shape
|
||||
x = x.reshape(
|
||||
[B, H // window_size, window_size, W // window_size, window_size, C])
|
||||
windows = x.transpose(perm=[0, 1, 3, 2, 4, 5]).reshape(
|
||||
[-1, window_size, window_size, C])
|
||||
return windows
|
||||
|
||||
|
||||
def window_reverse(windows, window_size, H, W):
|
||||
"""
|
||||
Args:
|
||||
windows: (num_windows*B, window_size, window_size, C)
|
||||
window_size (int): Window size
|
||||
H (int): Height of image
|
||||
W (int): Width of image
|
||||
|
||||
Returns:
|
||||
x: (B, H, W, C)
|
||||
"""
|
||||
C = windows.shape[-1]
|
||||
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
||||
x = windows.reshape(
|
||||
[-1, H // window_size, W // window_size, window_size, window_size, C])
|
||||
x = x.transpose(perm=[0, 1, 3, 2, 4, 5]).reshape([-1, H, W, C])
|
||||
return x
|
||||
|
||||
|
||||
class WindowAttention(nn.Layer):
|
||||
r""" Window based multi-head self attention (W-MSA) module with relative position bias.
|
||||
It supports both of shifted and non-shifted window.
|
||||
|
||||
Args:
|
||||
dim (int): Number of input channels.
|
||||
window_size (tuple[int]): The height and width of the window.
|
||||
num_heads (int): Number of attention heads.
|
||||
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
||||
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
||||
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
||||
pretrained_window_size (tuple[int]): The height and width of the window in pre-training.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
dim,
|
||||
window_size,
|
||||
num_heads,
|
||||
qkv_bias=True,
|
||||
attn_drop=0.,
|
||||
proj_drop=0.,
|
||||
pretrained_window_size=[0, 0]):
|
||||
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.window_size = window_size # Wh, Ww
|
||||
self.pretrained_window_size = pretrained_window_size
|
||||
self.num_heads = num_heads
|
||||
|
||||
self.logit_scale = self.create_parameter(
|
||||
[num_heads, 1, 1],
|
||||
dtype='float32',
|
||||
default_initializer=Constant(math.log(10.)))
|
||||
|
||||
# mlp to generate continuous relative position bias
|
||||
self.cpb_mlp = nn.Sequential(
|
||||
nn.Linear(
|
||||
2, 512, bias_attr=True),
|
||||
nn.ReLU(),
|
||||
nn.Linear(
|
||||
512, num_heads, bias_attr=False))
|
||||
|
||||
# get relative_coords_table
|
||||
relative_coords_h = paddle.arange(
|
||||
-(self.window_size[0] - 1), self.window_size[0], dtype='float32')
|
||||
relative_coords_w = paddle.arange(
|
||||
-(self.window_size[1] - 1), self.window_size[1], dtype='float32')
|
||||
relative_coords_table = paddle.stack(
|
||||
paddle.meshgrid([relative_coords_h, relative_coords_w])).transpose(
|
||||
perm=[1, 2, 0]).unsqueeze(0) # 1, 2*Wh-1, 2*Ww-1, 2
|
||||
if pretrained_window_size[0] > 0:
|
||||
relative_coords_table[:, :, :, 0] /= (
|
||||
pretrained_window_size[0] - 1)
|
||||
relative_coords_table[:, :, :, 1] /= (
|
||||
pretrained_window_size[1] - 1)
|
||||
else:
|
||||
relative_coords_table[:, :, :, 0] /= (self.window_size[0] - 1)
|
||||
relative_coords_table[:, :, :, 1] /= (self.window_size[1] - 1)
|
||||
relative_coords_table *= 8 # normalize to -8, 8
|
||||
relative_coords_table = paddle.sign(
|
||||
relative_coords_table) * paddle.log2(
|
||||
paddle.abs(relative_coords_table) + 1.0) / np.log2(8)
|
||||
|
||||
self.register_buffer("relative_coords_table", relative_coords_table)
|
||||
|
||||
# get pair-wise relative position index for each token inside the window
|
||||
coords_h = paddle.arange(self.window_size[0])
|
||||
coords_w = paddle.arange(self.window_size[1])
|
||||
coords = paddle.stack(paddle.meshgrid(
|
||||
[coords_h, coords_w])) # 2, Wh, Ww
|
||||
coords_flatten = paddle.flatten(coords, 1) # 2, Wh*Ww
|
||||
relative_coords = coords_flatten[:, :,
|
||||
None] - coords_flatten[:,
|
||||
None, :] # 2, Wh*Ww, Wh*Ww
|
||||
relative_coords = relative_coords.transpose(
|
||||
perm=[1, 2, 0]) # Wh*Ww, Wh*Ww, 2
|
||||
relative_coords[:, :, 0] += self.window_size[
|
||||
0] - 1 # shift to start from 0
|
||||
relative_coords[:, :, 1] += self.window_size[1] - 1
|
||||
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
||||
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
||||
self.register_buffer("relative_position_index",
|
||||
relative_position_index)
|
||||
|
||||
self.qkv = nn.Linear(dim, dim * 3, bias_attr=False)
|
||||
if qkv_bias:
|
||||
self.q_bias = self.create_parameter(
|
||||
[dim], dtype='float32', default_initializer=zeros_)
|
||||
self.v_bias = self.create_parameter(
|
||||
[dim], dtype='float32', default_initializer=zeros_)
|
||||
else:
|
||||
self.q_bias = None
|
||||
self.v_bias = None
|
||||
self.attn_drop = nn.Dropout(attn_drop)
|
||||
self.proj = nn.Linear(dim, dim)
|
||||
self.proj_drop = nn.Dropout(proj_drop)
|
||||
self.softmax = nn.Softmax(axis=-1)
|
||||
|
||||
def forward(self, x, mask=None):
|
||||
"""
|
||||
Args:
|
||||
x: input features with shape of (num_windows*B, N, C)
|
||||
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
||||
"""
|
||||
B_, N, C = x.shape
|
||||
qkv_bias = None
|
||||
if self.q_bias is not None:
|
||||
qkv_bias = paddle.concat(
|
||||
x=[self.q_bias, paddle.zeros_like(self.v_bias), self.v_bias])
|
||||
qkv = F.linear(x=x, weight=self.qkv.weight, bias=qkv_bias)
|
||||
qkv = qkv.reshape(shape=[
|
||||
B_, N, 3, self.num_heads, qkv.shape[-1] // (3 * self.num_heads)
|
||||
]).transpose(perm=[2, 0, 3, 1, 4])
|
||||
q, k, v = qkv[0], qkv[1], qkv[
|
||||
2] # make paddlescript happy (cannot use tensor as tuple)
|
||||
|
||||
# cosine attention
|
||||
attn = (F.normalize(
|
||||
q, axis=-1) @F.normalize(
|
||||
k, axis=-1).transpose(perm=[0, 1, 3, 2]))
|
||||
logit_scale = paddle.clip(
|
||||
self.logit_scale, max=math.log(1. / 0.01)).exp()
|
||||
attn = attn * logit_scale
|
||||
|
||||
relative_position_bias_table = self.cpb_mlp(
|
||||
self.relative_coords_table).reshape([-1, self.num_heads])
|
||||
relative_position_bias = relative_position_bias_table[
|
||||
self.relative_position_index.reshape([-1])].reshape([
|
||||
self.window_size[0] * self.window_size[1],
|
||||
self.window_size[0] * self.window_size[1], -1
|
||||
]) # Wh*Ww,Wh*Ww,nH
|
||||
relative_position_bias = relative_position_bias.transpose(
|
||||
perm=[2, 0, 1]) # nH, Wh*Ww, Wh*Ww
|
||||
relative_position_bias = 16 * F.sigmoid(relative_position_bias)
|
||||
attn = attn + relative_position_bias.unsqueeze(0)
|
||||
|
||||
if mask is not None:
|
||||
nW = mask.shape[0]
|
||||
attn = attn.reshape([B_ // nW, nW, self.num_heads, N, N
|
||||
]) + mask.unsqueeze(1).unsqueeze(0)
|
||||
attn = attn.reshape([-1, self.num_heads, N, N])
|
||||
attn = self.softmax(attn)
|
||||
else:
|
||||
attn = self.softmax(attn)
|
||||
|
||||
attn = self.attn_drop(attn)
|
||||
|
||||
x = (attn @v).transpose(perm=[0, 2, 1, 3]).reshape(shape=[B_, N, C])
|
||||
x = self.proj(x)
|
||||
x = self.proj_drop(x)
|
||||
return x
|
||||
|
||||
def extra_repr(self):
|
||||
return f'dim={self.dim}, window_size={self.window_size}, ' \
|
||||
f'pretrained_window_size={self.pretrained_window_size}, num_heads={self.num_heads}'
|
||||
|
||||
def flops(self, N):
|
||||
# calculate flops for 1 window with token length of N
|
||||
flops = 0
|
||||
flops += N * self.dim * 3 * self.dim
|
||||
flops += self.num_heads * N * (self.dim // self.num_heads) * N
|
||||
flops += self.num_heads * N * N * (self.dim // self.num_heads)
|
||||
flops += N * self.dim * self.dim
|
||||
return flops
|
||||
|
||||
|
||||
class SwinTransformerBlock(nn.Layer):
|
||||
r""" Swin Transformer Block.
|
||||
|
||||
Args:
|
||||
dim (int): Number of input channels.
|
||||
input_resolution (tuple[int]): Input resulotion.
|
||||
num_heads (int): Number of attention heads.
|
||||
window_size (int): Window size.
|
||||
shift_size (int): Shift size for SW-MSA.
|
||||
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
||||
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
||||
drop (float, optional): Dropout rate. Default: 0.0
|
||||
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
||||
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
||||
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
||||
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
||||
pretrained_window_size (int): Window size in pre-training.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
dim,
|
||||
input_resolution,
|
||||
num_heads,
|
||||
window_size=8,
|
||||
shift_size=0,
|
||||
mlp_ratio=4.,
|
||||
qkv_bias=True,
|
||||
drop=0.,
|
||||
attn_drop=0.,
|
||||
drop_path=0.,
|
||||
act_layer=nn.GELU,
|
||||
norm_layer=nn.LayerNorm,
|
||||
pretrained_window_size=0):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.input_resolution = input_resolution
|
||||
self.num_heads = num_heads
|
||||
self.window_size = window_size
|
||||
self.shift_size = shift_size
|
||||
self.mlp_ratio = mlp_ratio
|
||||
if min(self.input_resolution) <= self.window_size:
|
||||
# if window size is larger than input resolution, we don't partition windows
|
||||
self.shift_size = 0
|
||||
self.window_size = min(self.input_resolution)
|
||||
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
|
||||
|
||||
self.norm1 = norm_layer(dim)
|
||||
self.attn = WindowAttention(
|
||||
dim,
|
||||
window_size=to_2tuple(self.window_size),
|
||||
num_heads=num_heads,
|
||||
qkv_bias=qkv_bias,
|
||||
attn_drop=attn_drop,
|
||||
proj_drop=drop,
|
||||
pretrained_window_size=to_2tuple(pretrained_window_size))
|
||||
|
||||
self.drop_path = DropPath(
|
||||
drop_path) if drop_path > 0. else nn.Identity()
|
||||
self.norm2 = norm_layer(dim)
|
||||
mlp_hidden_dim = int(dim * mlp_ratio)
|
||||
self.mlp = Mlp(in_features=dim,
|
||||
hidden_features=mlp_hidden_dim,
|
||||
act_layer=act_layer,
|
||||
drop=drop)
|
||||
|
||||
if self.shift_size > 0:
|
||||
# calculate attention mask for SW-MSA
|
||||
H, W = self.input_resolution
|
||||
img_mask = paddle.zeros([1, H, W, 1]) # 1 H W 1
|
||||
h_slices = (slice(0, -self.window_size),
|
||||
slice(-self.window_size, -self.shift_size),
|
||||
slice(-self.shift_size, None))
|
||||
w_slices = (slice(0, -self.window_size),
|
||||
slice(-self.window_size, -self.shift_size),
|
||||
slice(-self.shift_size, None))
|
||||
cnt = 0
|
||||
for h in h_slices:
|
||||
for w in w_slices:
|
||||
img_mask[:, h, w, :] = cnt
|
||||
cnt += 1
|
||||
|
||||
mask_windows = window_partition(
|
||||
img_mask, self.window_size) # nW, window_size, window_size, 1
|
||||
mask_windows = mask_windows.reshape(
|
||||
shape=[-1, self.window_size * self.window_size])
|
||||
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
||||
attn_mask = masked_fill(attn_mask, attn_mask != 0, float(-100.0))
|
||||
attn_mask = masked_fill(attn_mask, attn_mask == 0, float(0.0))
|
||||
else:
|
||||
attn_mask = None
|
||||
|
||||
self.register_buffer("attn_mask", attn_mask)
|
||||
|
||||
def forward(self, x):
|
||||
H, W = self.input_resolution
|
||||
B, L, C = x.shape
|
||||
assert L == H * W, "input feature has wrong size"
|
||||
|
||||
shortcut = x
|
||||
x = x.reshape(shape=[B, H, W, C])
|
||||
|
||||
# cyclic shift
|
||||
if self.shift_size > 0:
|
||||
shifted_x = paddle.roll(
|
||||
x, shifts=(-self.shift_size, -self.shift_size), axis=(1, 2))
|
||||
else:
|
||||
shifted_x = x
|
||||
|
||||
# partition windows
|
||||
x_windows = window_partition(
|
||||
shifted_x, self.window_size) # nW*B, window_size, window_size, C
|
||||
x_windows = x_windows.reshape(
|
||||
[-1, self.window_size * self.window_size,
|
||||
C]) # nW*B, window_size*window_size, C
|
||||
|
||||
# W-MSA/SW-MSA
|
||||
attn_windows = self.attn(
|
||||
x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C
|
||||
|
||||
# merge windows
|
||||
attn_windows = attn_windows.reshape(
|
||||
[-1, self.window_size, self.window_size, C])
|
||||
shifted_x = window_reverse(attn_windows, self.window_size, H,
|
||||
W) # B H' W' C
|
||||
|
||||
# reverse cyclic shift
|
||||
if self.shift_size > 0:
|
||||
x = paddle.roll(
|
||||
shifted_x,
|
||||
shifts=(self.shift_size, self.shift_size),
|
||||
axis=(1, 2))
|
||||
else:
|
||||
x = shifted_x
|
||||
x = x.reshape([B, H * W, C])
|
||||
x = shortcut + self.drop_path(self.norm1(x))
|
||||
|
||||
# FFN
|
||||
x = x + self.drop_path(self.norm2(self.mlp(x)))
|
||||
|
||||
return x
|
||||
|
||||
def extra_repr(self):
|
||||
return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
|
||||
f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"
|
||||
|
||||
def flops(self):
|
||||
flops = 0
|
||||
H, W = self.input_resolution
|
||||
# norm1
|
||||
flops += self.dim * H * W
|
||||
# W-MSA/SW-MSA
|
||||
nW = H * W / self.window_size / self.window_size
|
||||
flops += nW * self.attn.flops(self.window_size * self.window_size)
|
||||
# mlp
|
||||
flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
|
||||
# norm2
|
||||
flops += self.dim * H * W
|
||||
return flops
|
||||
|
||||
|
||||
class PatchMerging(nn.Layer):
|
||||
r""" Patch Merging Layer.
|
||||
|
||||
Args:
|
||||
input_resolution (tuple[int]): Resolution of input feature.
|
||||
dim (int): Number of input channels.
|
||||
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
||||
"""
|
||||
|
||||
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
|
||||
super().__init__()
|
||||
self.input_resolution = input_resolution
|
||||
self.dim = dim
|
||||
self.reduction = nn.Linear(4 * dim, 2 * dim, bias_attr=False)
|
||||
self.norm = norm_layer(2 * dim)
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
x: B, H*W, C
|
||||
"""
|
||||
H, W = self.input_resolution
|
||||
B, L, C = x.shape
|
||||
assert L == H * W, "input feature has wrong size"
|
||||
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
|
||||
|
||||
x = x.reshape([B, H // 2, 2, W // 2, 2, C])
|
||||
x = x.transpose((0, 1, 3, 4, 2, 5))
|
||||
x = x.reshape([B, H * W // 4, 4 * C]) # B H/2*W/2 4*C
|
||||
x = self.reduction(x)
|
||||
x = self.norm(x)
|
||||
return x
|
||||
|
||||
def extra_repr(self):
|
||||
return f"input_resolution={self.input_resolution}, dim={self.dim}"
|
||||
|
||||
def flops(self):
|
||||
H, W = self.input_resolution
|
||||
flops = (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim
|
||||
flops += H * W * self.dim // 2
|
||||
return flops
|
||||
|
||||
|
||||
class BasicLayer(nn.Layer):
|
||||
""" A basic Swin Transformer layer for one stage.
|
||||
|
||||
Args:
|
||||
dim (int): Number of input channels.
|
||||
input_resolution (tuple[int]): Input resolution.
|
||||
depth (int): Number of blocks.
|
||||
num_heads (int): Number of attention heads.
|
||||
window_size (int): Local window size.
|
||||
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
||||
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
||||
drop (float, optional): Dropout rate. Default: 0.0
|
||||
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
||||
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
||||
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
||||
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
||||
pretrained_window_size (int): Local window size in pre-training.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
dim,
|
||||
input_resolution,
|
||||
depth,
|
||||
num_heads,
|
||||
window_size,
|
||||
mlp_ratio=4.,
|
||||
qkv_bias=True,
|
||||
drop=0.,
|
||||
attn_drop=0.,
|
||||
drop_path=0.,
|
||||
norm_layer=nn.LayerNorm,
|
||||
downsample=None,
|
||||
pretrained_window_size=0):
|
||||
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.input_resolution = input_resolution
|
||||
self.depth = depth
|
||||
|
||||
# build blocks
|
||||
self.blocks = nn.LayerList([
|
||||
SwinTransformerBlock(
|
||||
dim=dim,
|
||||
input_resolution=input_resolution,
|
||||
num_heads=num_heads,
|
||||
window_size=window_size,
|
||||
shift_size=0 if (i % 2 == 0) else window_size // 2,
|
||||
mlp_ratio=mlp_ratio,
|
||||
qkv_bias=qkv_bias,
|
||||
drop=drop,
|
||||
attn_drop=attn_drop,
|
||||
drop_path=drop_path[i]
|
||||
if isinstance(drop_path, list) else drop_path,
|
||||
norm_layer=norm_layer,
|
||||
pretrained_window_size=pretrained_window_size)
|
||||
for i in range(depth)
|
||||
])
|
||||
|
||||
# patch merging layer
|
||||
if downsample is not None:
|
||||
self.downsample = downsample(
|
||||
input_resolution, dim=dim, norm_layer=norm_layer)
|
||||
else:
|
||||
self.downsample = None
|
||||
|
||||
def forward(self, x):
|
||||
for blk in self.blocks:
|
||||
x = blk(x)
|
||||
if self.downsample is not None:
|
||||
x = self.downsample(x)
|
||||
return x
|
||||
|
||||
def extra_repr(self):
|
||||
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
|
||||
|
||||
def flops(self):
|
||||
flops = 0
|
||||
for blk in self.blocks:
|
||||
flops += blk.flops()
|
||||
if self.downsample is not None:
|
||||
flops += self.downsample.flops()
|
||||
return flops
|
||||
|
||||
|
||||
class PatchEmbed(nn.Layer):
|
||||
r""" Image to Patch Embedding
|
||||
|
||||
Args:
|
||||
img_size (int): Image size. Default: 256.
|
||||
patch_size (int): Patch token size. Default: 4.
|
||||
in_chans (int): Number of input image channels. Default: 3.
|
||||
embed_dim (int): Number of linear projection output channels. Default: 96.
|
||||
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
img_size=256,
|
||||
patch_size=4,
|
||||
in_chans=3,
|
||||
embed_dim=96,
|
||||
norm_layer=None):
|
||||
super().__init__()
|
||||
img_size = to_2tuple(img_size)
|
||||
patch_size = to_2tuple(patch_size)
|
||||
patches_resolution = [
|
||||
img_size[0] // patch_size[0], img_size[1] // patch_size[1]
|
||||
]
|
||||
self.img_size = img_size
|
||||
self.patch_size = patch_size
|
||||
self.patches_resolution = patches_resolution
|
||||
self.num_patches = patches_resolution[0] * patches_resolution[1]
|
||||
|
||||
self.in_chans = in_chans
|
||||
self.embed_dim = embed_dim
|
||||
|
||||
self.proj = nn.Conv2D(
|
||||
in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
||||
if norm_layer is not None:
|
||||
self.norm = norm_layer(embed_dim)
|
||||
else:
|
||||
self.norm = None
|
||||
|
||||
def forward(self, x):
|
||||
B, C, H, W = x.shape
|
||||
# FIXME look at relaxing size constraints
|
||||
assert H == self.img_size[0] and W == self.img_size[1], \
|
||||
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
||||
x = self.proj(x).flatten(2).transpose([0, 2, 1]) # B Ph*Pw C
|
||||
if self.norm is not None:
|
||||
x = self.norm(x)
|
||||
return x
|
||||
|
||||
def flops(self):
|
||||
Ho, Wo = self.patches_resolution
|
||||
flops = Ho * Wo * self.embed_dim * self.in_chans * (
|
||||
self.patch_size[0] * self.patch_size[1])
|
||||
if self.norm is not None:
|
||||
flops += Ho * Wo * self.embed_dim
|
||||
return flops
|
||||
|
||||
|
||||
class SwinTransformerV2(nn.Layer):
|
||||
r""" Swin TransformerV2
|
||||
A PaddlePaddle impl of : `Swin Transformer V2: Scaling Up Capacity and Resolution` -
|
||||
https://arxiv.org/abs/2111.09883
|
||||
|
||||
Args:
|
||||
img_size (int | tuple(int)): Input image size. Default 256
|
||||
patch_size (int | tuple(int)): Patch size. Default: 4
|
||||
in_chans (int): Number of input image channels. Default: 3
|
||||
class_num (int): Number of classes for classification head. Default: 1000
|
||||
embed_dim (int): Patch embedding dimension. Default: 96
|
||||
depths (tuple(int)): Depth of each Swin Transformer layer.
|
||||
num_heads (tuple(int)): Number of attention heads in different layers.
|
||||
window_size (int): Window size. Default: 7
|
||||
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
|
||||
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
||||
drop_rate (float): Dropout rate. Default: 0
|
||||
attn_drop_rate (float): Attention dropout rate. Default: 0
|
||||
drop_path_rate (float): Stochastic depth rate. Default: 0.1
|
||||
norm_layer (nn.Layer): Normalization layer. Default: nn.LayerNorm.
|
||||
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
|
||||
patch_norm (bool): If True, add normalization after patch embedding. Default: True
|
||||
pretrained_window_sizes (tuple(int)): Pretrained window sizes of each layer.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
img_size=256,
|
||||
patch_size=4,
|
||||
in_chans=3,
|
||||
class_num=1000,
|
||||
embed_dim=96,
|
||||
depths=[2, 2, 6, 2],
|
||||
num_heads=[3, 6, 12, 24],
|
||||
window_size=7,
|
||||
mlp_ratio=4.,
|
||||
qkv_bias=True,
|
||||
drop_rate=0.,
|
||||
attn_drop_rate=0.,
|
||||
drop_path_rate=0.1,
|
||||
norm_layer=nn.LayerNorm,
|
||||
ape=False,
|
||||
patch_norm=True,
|
||||
pretrained_window_sizes=[0, 0, 0, 0],
|
||||
**kwargs):
|
||||
super().__init__()
|
||||
|
||||
self.class_num = class_num
|
||||
self.num_layers = len(depths)
|
||||
self.embed_dim = embed_dim
|
||||
self.ape = ape
|
||||
self.patch_norm = patch_norm
|
||||
self.num_features = int(embed_dim * 2**(self.num_layers - 1))
|
||||
self.mlp_ratio = mlp_ratio
|
||||
|
||||
# split image into non-overlapping patches
|
||||
self.patch_embed = PatchEmbed(
|
||||
img_size=img_size,
|
||||
patch_size=patch_size,
|
||||
in_chans=in_chans,
|
||||
embed_dim=embed_dim,
|
||||
norm_layer=norm_layer if self.patch_norm else None)
|
||||
num_patches = self.patch_embed.num_patches
|
||||
patches_resolution = self.patch_embed.patches_resolution
|
||||
self.patches_resolution = patches_resolution
|
||||
|
||||
# absolute position embedding
|
||||
if self.ape:
|
||||
self.absolute_pos_embed = self.create_parameter(
|
||||
shape=(1, num_patches, embed_dim), default_initializer=zeros_)
|
||||
trunc_normal_(self.absolute_pos_embed)
|
||||
|
||||
self.pos_drop = nn.Dropout(p=drop_rate)
|
||||
|
||||
# stochastic depth
|
||||
dpr = [
|
||||
x.item() for x in paddle.linspace(0, drop_path_rate, sum(depths))
|
||||
] # stochastic depth decay rule
|
||||
|
||||
# build layers
|
||||
self.layers = nn.LayerList()
|
||||
for i_layer in range(self.num_layers):
|
||||
layer = BasicLayer(
|
||||
dim=int(embed_dim * 2**i_layer),
|
||||
input_resolution=(patches_resolution[0] // (2**i_layer),
|
||||
patches_resolution[1] // (2**i_layer)),
|
||||
depth=depths[i_layer],
|
||||
num_heads=num_heads[i_layer],
|
||||
window_size=window_size,
|
||||
mlp_ratio=self.mlp_ratio,
|
||||
qkv_bias=qkv_bias,
|
||||
drop=drop_rate,
|
||||
attn_drop=attn_drop_rate,
|
||||
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
|
||||
norm_layer=norm_layer,
|
||||
downsample=PatchMerging
|
||||
if (i_layer < self.num_layers - 1) else None,
|
||||
pretrained_window_size=pretrained_window_sizes[i_layer])
|
||||
self.layers.append(layer)
|
||||
|
||||
self.norm = norm_layer(self.num_features)
|
||||
self.avgpool = nn.AdaptiveAvgPool1D(1)
|
||||
self.head = nn.Linear(self.num_features,
|
||||
class_num) if class_num > 0 else nn.Identity()
|
||||
|
||||
self.apply(self._init_weights)
|
||||
|
||||
def _init_weights(self, m):
|
||||
if isinstance(m, nn.Linear):
|
||||
trunc_normal_(m.weight)
|
||||
if isinstance(m, nn.Linear) and m.bias is not None:
|
||||
zeros_(m.bias)
|
||||
elif isinstance(m, nn.LayerNorm):
|
||||
zeros_(m.bias)
|
||||
ones_(m.weight)
|
||||
|
||||
def forward_features(self, x):
|
||||
x = self.patch_embed(x)
|
||||
if self.ape:
|
||||
x = x + self.absolute_pos_embed
|
||||
x = self.pos_drop(x)
|
||||
|
||||
for layer in self.layers:
|
||||
x = layer(x)
|
||||
|
||||
x = self.norm(x) # B L C
|
||||
x = self.avgpool(x.transpose([0, 2, 1])) # B C 1
|
||||
x = paddle.flatten(x, 1)
|
||||
return x
|
||||
|
||||
def forward(self, x):
|
||||
x = self.forward_features(x)
|
||||
x = self.head(x)
|
||||
return x
|
||||
|
||||
def flops(self):
|
||||
flops = 0
|
||||
flops += self.patch_embed.flops()
|
||||
for i, layer in enumerate(self.layers):
|
||||
flops += layer.flops()
|
||||
flops += self.num_features * self.patches_resolution[
|
||||
0] * self.patches_resolution[1] // (2**self.num_layers)
|
||||
flops += self.num_features * self.class_num
|
||||
return flops
|
||||
|
||||
|
||||
def _load_pretrained(pretrained,
|
||||
model,
|
||||
model_url,
|
||||
use_ssld=False,
|
||||
use_imagenet22k_pretrained=False,
|
||||
use_imagenet22kto1k_pretrained=False):
|
||||
if pretrained is False:
|
||||
pass
|
||||
elif pretrained is True:
|
||||
load_dygraph_pretrain_from_url(
|
||||
model,
|
||||
model_url,
|
||||
use_ssld=use_ssld,
|
||||
use_imagenet22k_pretrained=False,
|
||||
use_imagenet22kto1k_pretrained=False)
|
||||
elif isinstance(pretrained, str):
|
||||
load_dygraph_pretrain(model, pretrained, **kwargs)
|
||||
else:
|
||||
raise RuntimeError(
|
||||
"pretrained type is not available. Please use `string` or `boolean` type."
|
||||
)
|
||||
|
||||
|
||||
def SwinTransformerV2_tiny_patch4_window8_256(pretrained=False,
|
||||
use_ssld=False,
|
||||
**kwargs):
|
||||
model = SwinTransformerV2(
|
||||
img_size=256,
|
||||
embed_dim=96,
|
||||
depths=[2, 2, 6, 2],
|
||||
num_heads=[3, 6, 12, 24],
|
||||
window_size=8,
|
||||
drop_path_rate=0.2,
|
||||
**kwargs)
|
||||
_load_pretrained(
|
||||
pretrained,
|
||||
model,
|
||||
MODEL_URLS["SwinTransformerV2_tiny_patch4_window8_256"],
|
||||
use_ssld=use_ssld)
|
||||
return model
|
||||
|
||||
|
||||
def SwinTransformerV2_tiny_patch4_window16_256(pretrained=False,
|
||||
use_ssld=False,
|
||||
**kwargs):
|
||||
model = SwinTransformerV2(
|
||||
img_size=256,
|
||||
embed_dim=96,
|
||||
depths=[2, 2, 6, 2],
|
||||
num_heads=[3, 6, 12, 24],
|
||||
window_size=16,
|
||||
drop_path_rate=0.2,
|
||||
**kwargs)
|
||||
_load_pretrained(
|
||||
pretrained,
|
||||
model,
|
||||
MODEL_URLS["SwinTransformerV2_tiny_patch4_window16_256"],
|
||||
use_ssld=use_ssld)
|
||||
return model
|
||||
|
||||
|
||||
def SwinTransformerV2_small_patch4_window8_256(pretrained=False,
|
||||
use_ssld=False,
|
||||
**kwargs):
|
||||
model = SwinTransformerV2(
|
||||
img_size=256,
|
||||
embed_dim=96,
|
||||
depths=[2, 2, 18, 2],
|
||||
num_heads=[3, 6, 12, 24],
|
||||
window_size=8,
|
||||
drop_path_rate=0.3,
|
||||
**kwargs)
|
||||
_load_pretrained(
|
||||
pretrained,
|
||||
model,
|
||||
MODEL_URLS["SwinTransformerV2_small_patch4_window8_256"],
|
||||
use_ssld=use_ssld)
|
||||
return model
|
||||
|
||||
|
||||
def SwinTransformerV2_small_patch4_window16_256(pretrained=False,
|
||||
use_ssld=False,
|
||||
**kwargs):
|
||||
model = SwinTransformerV2(
|
||||
img_size=256,
|
||||
embed_dim=96,
|
||||
depths=[2, 2, 18, 2],
|
||||
num_heads=[3, 6, 12, 24],
|
||||
window_size=16,
|
||||
drop_path_rate=0.3,
|
||||
**kwargs)
|
||||
_load_pretrained(
|
||||
pretrained,
|
||||
model,
|
||||
MODEL_URLS["SwinTransformerV2_small_patch4_window16_256"],
|
||||
use_ssld=use_ssld)
|
||||
return model
|
||||
|
||||
|
||||
def SwinTransformerV2_base_patch4_window8_256(pretrained=False,
|
||||
use_ssld=False,
|
||||
**kwargs):
|
||||
model = SwinTransformerV2(
|
||||
img_size=256,
|
||||
embed_dim=128,
|
||||
depths=[2, 2, 18, 2],
|
||||
num_heads=[4, 8, 16, 32],
|
||||
window_size=8,
|
||||
drop_path_rate=0.5,
|
||||
**kwargs)
|
||||
_load_pretrained(
|
||||
pretrained,
|
||||
model,
|
||||
MODEL_URLS["SwinTransformerV2_base_patch4_window8_256"],
|
||||
use_ssld=use_ssld,
|
||||
use_imagenet22k_pretrained=use_imagenet22k_pretrained)
|
||||
return model
|
||||
|
||||
|
||||
def SwinTransformerV2_base_patch4_window16_256(
|
||||
pretrained=False,
|
||||
use_ssld=False,
|
||||
use_imagenet22k_pretrained=False,
|
||||
use_imagenet22kto1k_pretrained=False,
|
||||
**kwargs):
|
||||
model = SwinTransformerV2(
|
||||
img_size=256,
|
||||
embed_dim=128,
|
||||
depths=[2, 2, 18, 2],
|
||||
num_heads=[4, 8, 16, 32],
|
||||
window_size=16,
|
||||
drop_path_rate=0.5, # if use imagenet22k or imagenet22kto1k, drop_path_rate=0.2
|
||||
**kwargs
|
||||
) # if use imagenet22k, set pretrained_window_sizes=[12, 12, 12, 6]
|
||||
_load_pretrained(
|
||||
pretrained,
|
||||
model,
|
||||
MODEL_URLS["SwinTransformerV2_base_patch4_window16_256"],
|
||||
use_ssld=use_ssld,
|
||||
use_imagenet22k_pretrained=use_imagenet22k_pretrained,
|
||||
use_imagenet22kto1k_pretrained=use_imagenet22kto1k_pretrained)
|
||||
return model
|
||||
|
||||
|
||||
def SwinTransformerV2_base_patch4_window24_384(
|
||||
pretrained=False,
|
||||
use_ssld=False,
|
||||
use_imagenet22k_pretrained=False,
|
||||
use_imagenet22kto1k_pretrained=False,
|
||||
**kwargs):
|
||||
model = SwinTransformerV2(
|
||||
img_size=384,
|
||||
embed_dim=128,
|
||||
depths=[2, 2, 18, 2],
|
||||
num_heads=[4, 8, 16, 32],
|
||||
window_size=24,
|
||||
drop_path_rate=0.2,
|
||||
pretrained_window_sizes=[12, 12, 12, 6],
|
||||
**kwargs)
|
||||
_load_pretrained(
|
||||
pretrained,
|
||||
model,
|
||||
MODEL_URLS["SwinTransformerV2_base_patch4_window24_384"],
|
||||
use_ssld=use_ssld,
|
||||
use_imagenet22k_pretrained=use_imagenet22k_pretrained,
|
||||
use_imagenet22kto1k_pretrained=use_imagenet22kto1k_pretrained)
|
||||
return model
|
||||
|
||||
|
||||
def SwinTransformerV2_large_patch4_window16_256(
|
||||
pretrained=False,
|
||||
use_ssld=False,
|
||||
use_imagenet22k_pretrained=False,
|
||||
use_imagenet22kto1k_pretrained=False,
|
||||
**kwargs):
|
||||
model = SwinTransformerV2(
|
||||
img_size=256,
|
||||
embed_dim=192,
|
||||
depths=[2, 2, 18, 2],
|
||||
num_heads=[6, 12, 24, 48],
|
||||
window_size=16,
|
||||
drop_path_rate=0.2,
|
||||
pretrained_window_sizes=[12, 12, 12, 6],
|
||||
**kwargs)
|
||||
_load_pretrained(
|
||||
pretrained,
|
||||
model,
|
||||
MODEL_URLS["SwinTransformerV2_large_patch4_window16_256"],
|
||||
use_ssld=use_ssld,
|
||||
use_imagenet22k_pretrained=use_imagenet22k_pretrained,
|
||||
use_imagenet22kto1k_pretrained=use_imagenet22kto1k_pretrained)
|
||||
return model
|
||||
|
||||
|
||||
def SwinTransformerV2_large_patch4_window24_384(
|
||||
pretrained=False,
|
||||
use_ssld=False,
|
||||
use_imagenet22k_pretrained=False,
|
||||
use_imagenet22kto1k_pretrained=False,
|
||||
**kwargs):
|
||||
model = SwinTransformerV2(
|
||||
img_size=384,
|
||||
embed_dim=192,
|
||||
depths=[2, 2, 18, 2],
|
||||
num_heads=[6, 12, 24, 48],
|
||||
window_size=24,
|
||||
drop_path_rate=0.2,
|
||||
pretrained_window_sizes=[12, 12, 12, 6],
|
||||
**kwargs)
|
||||
_load_pretrained(
|
||||
pretrained,
|
||||
model,
|
||||
MODEL_URLS["SwinTransformerV2_large_patch4_window24_384"],
|
||||
use_ssld=use_ssld,
|
||||
use_imagenet22k_pretrained=use_imagenet22k_pretrained,
|
||||
use_imagenet22kto1k_pretrained=use_imagenet22kto1k_pretrained)
|
||||
return model
|
Loading…
Reference in New Issue