update README
parent
ca44dc9c7a
commit
2756de6c2b
11
README.md
11
README.md
|
@ -8,13 +8,10 @@ PaddleClas is a toolset for image classification tasks prepared for the industry
|
|||
|
||||
**Recent update**
|
||||
|
||||
- 2021.05.14 Add `SwinTransformer` series pretrained models, whose Top-1 Acc on ImageNet-1k dataset reaches 87.19%.
|
||||
- 2021.04.15 Add `MixNet` and `ReXNet` pretrained models, `MixNet_L`'s Top-1 Acc on ImageNet-1k reaches 78.6% and `ReXNet_3_0` reaches 82.09%.
|
||||
- 2021.03.02 Add support for model quantization.
|
||||
- 2021.02.01 Add `RepVGG` pretrained models, whose Top-1 Acc on ImageNet-1k dataset reaches 79.65%.
|
||||
- 2021.01.27 Add `ViT` and `DeiT` pretrained models, `ViT`'s Top-1 Acc on ImageNet-1k dataset reaches 85.13%, and `DeiT` reaches 85.1%.
|
||||
- 2021.01.08 Add support for whl package and its usage, Model inference can be done by simply install paddleclas using pip.
|
||||
- 2020.12.16 Add support for TensorRT when using cpp inference to obain more obvious acceleration.
|
||||
- 2021.06.16 PaddleClas release/2.2.
|
||||
- Add metric learning and vector search module.
|
||||
- Add product recognition, cartoon character recognition, car recognition and logo recognition.
|
||||
- Add xxx models(todo @崔程)
|
||||
- [more](./docs/en/update_history_en.md)
|
||||
|
||||
|
||||
|
|
36
README_cn.md
36
README_cn.md
|
@ -8,7 +8,10 @@
|
|||
|
||||
**近期更新**
|
||||
|
||||
- 2021.06.16 PaddleClas v2.2版本升级,集成Metric learning,向量检索等组件,新增4个图像识别应用。
|
||||
- 2021.06.16 PaddleClas v2.2版本升级
|
||||
- 集成Metric learning,向量检索等组件。
|
||||
- 新增商品识别、动漫人物识别、车辆识别和logo识别等4个图像识别应用。
|
||||
- 新增xxx模型(todo @崔程)
|
||||
- [more](./docs/zh_CN/update_history.md)
|
||||
|
||||
|
||||
|
@ -43,23 +46,22 @@
|
|||
## 文档教程
|
||||
|
||||
- [快速安装](./docs/zh_CN/tutorials/install.md)
|
||||
- 图像识别快速体验(若愚)
|
||||
- 图像分类快速体验(崔程,基于30分钟入门版修改)
|
||||
- [图像识别快速体验](./docs/zh_CN/tutorials/quick_start_recognition.md)
|
||||
- [图像分类快速体验](./docs/zh_CN/tutorials/quick_start_new_user.md)
|
||||
- 算法介绍
|
||||
- 图像识别系统] (胜禹)
|
||||
- [模型库介绍和预训练模型](./docs/zh_CN/models/models_intro.md)
|
||||
- [图像分类]
|
||||
- ImageNet分类任务(崔程,基于30分钟进阶版修改)
|
||||
- [多标签分类任务]()
|
||||
- [特征学习]
|
||||
- [商品识别]()
|
||||
- [车辆识别]()
|
||||
- [logo识别]()
|
||||
- [动漫人物识别]()
|
||||
- [向量检索]()
|
||||
- [骨干网络模型库和预训练模型介绍](./docs/zh_CN/models/models_intro.md)
|
||||
- [主体检测](./docs/zh_CN/application/object_detection.md)
|
||||
- 图像分类
|
||||
- [ImageNet分类任务](./docs/zh_CN/tutorials/quick_start_professional.md)
|
||||
- 特征学习
|
||||
- [商品识别](todo@崔程)
|
||||
- [车辆识别](./docs/zh_CN/application/vehicle_fine_grained_classfication.md)
|
||||
- [车辆ReID](./docs/zh_CN/application/vehicle_reid.md)
|
||||
- [logo识别](./docs/zh_CN/application/logo_recognition.md)
|
||||
- [向量检索](./deploy/vector_search/README.md)
|
||||
- 模型训练/评估
|
||||
- 图像分类任务(崔程,基于原有训练文档整理)
|
||||
- 特征学习任务(陆彬)
|
||||
- [图像分类任务](./docs/zh_CN/tutorials/getting_started.md)
|
||||
- [特征学习任务](./docs/zh_CN/application/feature_learning.md)
|
||||
- 模型预测
|
||||
- [基于训练引擎预测推理](./docs/zh_CN/tutorials/getting_started.md)
|
||||
- [基于Python预测引擎预测推理](./docs/zh_CN/tutorials/getting_started.md)
|
||||
|
@ -74,7 +76,7 @@
|
|||
- [数据增广](./docs/zh_CN/advanced_tutorials/image_augmentation/ImageAugment.md)
|
||||
- [代码解析与社区贡献指南](./docs/zh_CN/tutorials/quick_start_community.md)
|
||||
- FAQ(暂停更新)
|
||||
- [图像分类任务FAQ]
|
||||
- [图像分类任务FAQ](docs/zh_CN/faq.md)
|
||||
- [许可证书](#许可证书)
|
||||
- [贡献代码](#贡献代码)
|
||||
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
# Release Notes
|
||||
|
||||
|
||||
- 2021.05.14
|
||||
- Add `SwinTransformer` series pretrained models, whose Top-1 Acc on ImageNet-1k dataset reaches 87.19%.
|
||||
|
||||
- 2021.04.15
|
||||
- Add `MixNet` and `ReXNet` pretrained models, `MixNet_L`'s Top-1 Acc on ImageNet-1k reaches 78.6% and `ReXNet_3_0` reaches 82.09%.
|
||||
|
|
|
@ -1,7 +1,8 @@
|
|||
# 更新日志
|
||||
|
||||
|
||||
|
||||
- 2021.05.14
|
||||
- 添加`SwinTransformer` 系列模型,在ImageNet-1k上,Top1 Acc可达87.19%
|
||||
- 2021.04.15
|
||||
- 添加`MixNet_L`和`ReXNet_3_0`系列模型,在ImageNet-1k上`MixNet` 模型Top1 Acc可达78.6%,`ReXNet`模型可达82.09%
|
||||
- 2021.01.27
|
||||
|
|
Loading…
Reference in New Issue