commit
292c19d0b2
14
README.md
14
README.md
|
@ -8,9 +8,9 @@ PaddleClas is a toolset for image classification tasks prepared for the industry
|
|||
|
||||
|
||||
**Recent update**
|
||||
- 2020.09.17 Add `HRNet_W48_C_ssld` pretrained model, whose Top-1 Acc on ImageNet1k dataset reaches 83.62%. Add `ResNet34_vd_ssld` pretrained model, whose Top-1 Acc on ImageNet1k dataset reaches 79.72%.
|
||||
- 2020.09.07 Add `HRNet_W18_C_ssld` pretrained model, whose Top-1 Acc on ImageNet1k dataset reaches 81.16%.
|
||||
- 2020.07.14 Add `Res2Net200_vd_26w_4s_ssld` pretrained model, whose Top-1 Acc on ImageNet1k dataset reaches 85.13%. Add `Fix_ResNet50_vd_ssld_v2` pretrained model, whose Top-1 Acc on ImageNet1k dataset reaches 84.00%.
|
||||
- 2020.09.17 Add `HRNet_W48_C_ssld` pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 83.62%. Add `ResNet34_vd_ssld` pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 79.72%.
|
||||
- 2020.09.07 Add `HRNet_W18_C_ssld` pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 81.16%.
|
||||
- 2020.07.14 Add `Res2Net200_vd_26w_4s_ssld` pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 85.13%. Add `Fix_ResNet50_vd_ssld_v2` pretrained model, whose Top-1 Acc on ImageNet-1k dataset reaches 84.00%.
|
||||
- 2020.06.17 Add English documents.
|
||||
- 2020.06.12 Add support for training and evaluation on Windows or CPU.
|
||||
- 2020.05.17 Add support for mixed precision training.
|
||||
|
@ -19,9 +19,9 @@ PaddleClas is a toolset for image classification tasks prepared for the industry
|
|||
|
||||
## Features
|
||||
|
||||
- Rich model zoo. Based on the ImageNet1k classification dataset, PaddleClas provides 24 series of classification network structures and training configurations, 122 models' pretrained weights and their evaluation metrics.
|
||||
- Rich model zoo. Based on the ImageNet-1k classification dataset, PaddleClas provides 24 series of classification network structures and training configurations, 122 models' pretrained weights and their evaluation metrics.
|
||||
|
||||
- SSLD Knowledge Distillation. Based on this SSLD distillation strategy, the accuracy of the distilled model is generally increased by more than 3%.
|
||||
- SSLD Knowledge Distillation. Based on this SSLD distillation strategy, the top-1 acc of the distilled model is generally increased by more than 3%.
|
||||
|
||||
- Data augmentation: PaddleClas provides detailed introduction of 8 data augmentation algorithms such as AutoAugment, Cutout, Cutmix, code reproduction and effect evaluation in a unified experimental environment.
|
||||
|
||||
|
@ -77,7 +77,7 @@ PaddleClas is a toolset for image classification tasks prepared for the industry
|
|||
<a name="Model_zoo_overview"></a>
|
||||
### Model zoo overview
|
||||
|
||||
Based on the ImageNet1k classification dataset, the 24 classification network structures supported by PaddleClas and the corresponding 122 image classification pretrained models are shown below. Training trick, a brief introduction to each series of network structures, and performance evaluation will be shown in the corresponding chapters. The evaluation environment is as follows.
|
||||
Based on the ImageNet-1k classification dataset, the 24 classification network structures supported by PaddleClas and the corresponding 122 image classification pretrained models are shown below. Training trick, a brief introduction to each series of network structures, and performance evaluation will be shown in the corresponding chapters. The evaluation environment is as follows.
|
||||
|
||||
* CPU evaluation environment is based on Snapdragon 855 (SD855).
|
||||
* The GPU evaluation speed is measured by running 500 times under the FP32+TensorRT configuration (excluding the warmup time of the first 10 times).
|
||||
|
@ -127,7 +127,7 @@ Accuracy and inference time metrics of ResNet and Vd series models are shown as
|
|||
|
||||
Accuracy and inference time metrics of Mobile series models are shown as follows. More detailed information can be refered to [Mobile series tutorial](./docs/en/models/Mobile_en.md).
|
||||
|
||||
| Model | Top-1 Acc | Top-5 Acc | SD855 time(ms)<br>bs=1 | Flops(G) | Params(M) | 模型大小(M) | Download Address |
|
||||
| Model | Top-1 Acc | Top-5 Acc | SD855 time(ms)<br>bs=1 | Flops(G) | Params(M) | Model storage size(M) | Download Address |
|
||||
|----------------------------------|-----------|-----------|------------------------|----------|-----------|---------|-----------------------------------------------------------------------------------------------------------|
|
||||
| MobileNetV1_<br>x0_25 | 0.5143 | 0.7546 | 3.21985 | 0.07 | 0.46 | 1.9 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_x0_25_pretrained.tar) |
|
||||
| MobileNetV1_<br>x0_5 | 0.6352 | 0.8473 | 9.579599 | 0.28 | 1.31 | 5.2 | [Download link](https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_x0_5_pretrained.tar) |
|
||||
|
|
10
README_cn.md
10
README_cn.md
|
@ -7,12 +7,12 @@
|
|||
飞桨图像分类套件PaddleClas是飞桨为工业界和学术界所准备的一个图像分类任务的工具集,助力使用者训练出更好的视觉模型和应用落地。
|
||||
|
||||
**近期更新**
|
||||
- 2020.09.17 添加HRNet_W48_C_ssld模型,在ImageNet上Top-1 Acc可达0.836;添加ResNet34_vd_ssld模型,在ImageNet上Top-1 Acc可达0.797。
|
||||
- 2020.09.07 添加HRNet_W18_C_ssld模型,在ImageNet上Top-1 Acc可达0.81162;添加MobileNetV3_small_x0_35_ssld模型,在ImageNet上Top-1 Acc可达0.5555。
|
||||
- 2020.07.14 添加Res2Net200_vd_26w_4s_ssld模型,在ImageNet上Top-1 Acc可达85.13%;添加Fix_ResNet50_vd_ssld_v2模型,在ImageNet上Top-1 Acc可达84.0%。
|
||||
- 2020.09.17 添加 `HRNet_W48_C_ssld `模型,在ImageNet-1k上Top-1 Acc可达83.62%;添加 `ResNet34_vd_ssld `模型,在ImageNet-1k上Top-1 Acc可达79.72%。
|
||||
- 2020.09.07 添加 `HRNet_W18_C_ssld `模型,在ImageNet-1k上Top-1 Acc可达81.16%;添加 `MobileNetV3_small_x0_35_ssld `模型,在ImageNet-1k上Top-1 Acc可达55.55%。
|
||||
- 2020.07.14 添加 `Res2Net200_vd_26w_4s_ssld `模型,在ImageNet-1k上Top-1 Acc可达85.13%;添加 `Fix_ResNet50_vd_ssld_v2 `模型,在ImageNet-1k上Top-1 Acc可达84.0%。
|
||||
- 2020.06.17 添加英文文档。
|
||||
- 2020.06.12 添加对windows和CPU环境的训练与评估支持。
|
||||
- 2020.05.17 添加混合精度训练,基于ResNet50模型,精度几乎无损的情况下,训练时间可以减少约40%。
|
||||
- 2020.05.17 添加混合精度训练,基于 `ResNet50 `模型,精度几乎无损的情况下,训练时间可以减少约40%。
|
||||
- [more](./docs/zh_CN/update_history.md)
|
||||
|
||||
|
||||
|
@ -24,7 +24,7 @@
|
|||
|
||||
- 数据增广:支持AutoAugment、Cutout、Cutmix等8种数据增广算法详细介绍、代码复现和在统一实验环境下的效果评估。
|
||||
|
||||
- 10万类图像分类预训练模型:百度自研并开源了基于10万类数据集训练的ResNet50_vd模型,在一些实际场景中,使用该预训练模型的识别准确率最多可以提升30%。
|
||||
- 10万类图像分类预训练模型:百度自研并开源了基于10万类数据集训练的 `ResNet50_vd `模型,在一些实际场景中,使用该预训练模型的识别准确率最多可以提升30%。
|
||||
|
||||
- 多种训练方案,包括多机训练、混合精度训练等。
|
||||
|
||||
|
|
Loading…
Reference in New Issue