fix: change to relative import
parent
6595325b8c
commit
2a909c306a
|
@ -14,4 +14,4 @@
|
|||
|
||||
__all__ = ['PaddleClas']
|
||||
from .paddleclas import PaddleClas
|
||||
from ppcls.arch.backbone import *
|
||||
from .ppcls.arch.backbone import *
|
||||
|
|
|
@ -23,11 +23,11 @@ from . import backbone, gears
|
|||
from .backbone import *
|
||||
from .gears import build_gear
|
||||
from .utils import *
|
||||
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
|
||||
from ppcls.utils import logger
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain
|
||||
from ppcls.arch.slim import prune_model, quantize_model
|
||||
from ppcls.arch.distill.afd_attention import LinearTransformStudent, LinearTransformTeacher
|
||||
from .backbone.base.theseus_layer import TheseusLayer
|
||||
from ..utils import logger
|
||||
from ..utils.save_load import load_dygraph_pretrain
|
||||
from .slim import prune_model, quantize_model
|
||||
from .distill.afd_attention import LinearTransformStudent, LinearTransformTeacher
|
||||
|
||||
__all__ = ["build_model", "RecModel", "DistillationModel", "AttentionModel"]
|
||||
|
||||
|
|
|
@ -15,65 +15,65 @@
|
|||
import sys
|
||||
import inspect
|
||||
|
||||
from ppcls.arch.backbone.legendary_models.mobilenet_v1 import MobileNetV1_x0_25, MobileNetV1_x0_5, MobileNetV1_x0_75, MobileNetV1
|
||||
from ppcls.arch.backbone.legendary_models.mobilenet_v3 import MobileNetV3_small_x0_35, MobileNetV3_small_x0_5, MobileNetV3_small_x0_75, MobileNetV3_small_x1_0, MobileNetV3_small_x1_25, MobileNetV3_large_x0_35, MobileNetV3_large_x0_5, MobileNetV3_large_x0_75, MobileNetV3_large_x1_0, MobileNetV3_large_x1_25
|
||||
from ppcls.arch.backbone.legendary_models.resnet import ResNet18, ResNet18_vd, ResNet34, ResNet34_vd, ResNet50, ResNet50_vd, ResNet101, ResNet101_vd, ResNet152, ResNet152_vd, ResNet200_vd
|
||||
from ppcls.arch.backbone.legendary_models.vgg import VGG11, VGG13, VGG16, VGG19
|
||||
from ppcls.arch.backbone.legendary_models.inception_v3 import InceptionV3
|
||||
from ppcls.arch.backbone.legendary_models.hrnet import HRNet_W18_C, HRNet_W30_C, HRNet_W32_C, HRNet_W40_C, HRNet_W44_C, HRNet_W48_C, HRNet_W60_C, HRNet_W64_C, SE_HRNet_W64_C
|
||||
from ppcls.arch.backbone.legendary_models.pp_lcnet import PPLCNet_x0_25, PPLCNet_x0_35, PPLCNet_x0_5, PPLCNet_x0_75, PPLCNet_x1_0, PPLCNet_x1_5, PPLCNet_x2_0, PPLCNet_x2_5
|
||||
from ppcls.arch.backbone.legendary_models.pp_lcnet_v2 import PPLCNetV2_base
|
||||
from ppcls.arch.backbone.legendary_models.esnet import ESNet_x0_25, ESNet_x0_5, ESNet_x0_75, ESNet_x1_0
|
||||
from ppcls.arch.backbone.legendary_models.pp_hgnet import PPHGNet_tiny, PPHGNet_small, PPHGNet_base
|
||||
from .legendary_models.mobilenet_v1 import MobileNetV1_x0_25, MobileNetV1_x0_5, MobileNetV1_x0_75, MobileNetV1
|
||||
from .legendary_models.mobilenet_v3 import MobileNetV3_small_x0_35, MobileNetV3_small_x0_5, MobileNetV3_small_x0_75, MobileNetV3_small_x1_0, MobileNetV3_small_x1_25, MobileNetV3_large_x0_35, MobileNetV3_large_x0_5, MobileNetV3_large_x0_75, MobileNetV3_large_x1_0, MobileNetV3_large_x1_25
|
||||
from .legendary_models.resnet import ResNet18, ResNet18_vd, ResNet34, ResNet34_vd, ResNet50, ResNet50_vd, ResNet101, ResNet101_vd, ResNet152, ResNet152_vd, ResNet200_vd
|
||||
from .legendary_models.vgg import VGG11, VGG13, VGG16, VGG19
|
||||
from .legendary_models.inception_v3 import InceptionV3
|
||||
from .legendary_models.hrnet import HRNet_W18_C, HRNet_W30_C, HRNet_W32_C, HRNet_W40_C, HRNet_W44_C, HRNet_W48_C, HRNet_W60_C, HRNet_W64_C, SE_HRNet_W64_C
|
||||
from .legendary_models.pp_lcnet import PPLCNet_x0_25, PPLCNet_x0_35, PPLCNet_x0_5, PPLCNet_x0_75, PPLCNet_x1_0, PPLCNet_x1_5, PPLCNet_x2_0, PPLCNet_x2_5
|
||||
from .legendary_models.pp_lcnet_v2 import PPLCNetV2_base
|
||||
from .legendary_models.esnet import ESNet_x0_25, ESNet_x0_5, ESNet_x0_75, ESNet_x1_0
|
||||
from .legendary_models.pp_hgnet import PPHGNet_tiny, PPHGNet_small, PPHGNet_base
|
||||
|
||||
from ppcls.arch.backbone.model_zoo.resnet_vc import ResNet50_vc
|
||||
from ppcls.arch.backbone.model_zoo.resnext import ResNeXt50_32x4d, ResNeXt50_64x4d, ResNeXt101_32x4d, ResNeXt101_64x4d, ResNeXt152_32x4d, ResNeXt152_64x4d
|
||||
from ppcls.arch.backbone.model_zoo.resnext_vd import ResNeXt50_vd_32x4d, ResNeXt50_vd_64x4d, ResNeXt101_vd_32x4d, ResNeXt101_vd_64x4d, ResNeXt152_vd_32x4d, ResNeXt152_vd_64x4d
|
||||
from ppcls.arch.backbone.model_zoo.res2net import Res2Net50_26w_4s, Res2Net50_14w_8s
|
||||
from ppcls.arch.backbone.model_zoo.res2net_vd import Res2Net50_vd_26w_4s, Res2Net101_vd_26w_4s, Res2Net200_vd_26w_4s
|
||||
from ppcls.arch.backbone.model_zoo.se_resnet_vd import SE_ResNet18_vd, SE_ResNet34_vd, SE_ResNet50_vd
|
||||
from ppcls.arch.backbone.model_zoo.se_resnext_vd import SE_ResNeXt50_vd_32x4d, SE_ResNeXt50_vd_32x4d, SENet154_vd
|
||||
from ppcls.arch.backbone.model_zoo.se_resnext import SE_ResNeXt50_32x4d, SE_ResNeXt101_32x4d, SE_ResNeXt152_64x4d
|
||||
from ppcls.arch.backbone.model_zoo.dpn import DPN68, DPN92, DPN98, DPN107, DPN131
|
||||
from ppcls.arch.backbone.model_zoo.densenet import DenseNet121, DenseNet161, DenseNet169, DenseNet201, DenseNet264
|
||||
from ppcls.arch.backbone.model_zoo.efficientnet import EfficientNetB0, EfficientNetB1, EfficientNetB2, EfficientNetB3, EfficientNetB4, EfficientNetB5, EfficientNetB6, EfficientNetB7, EfficientNetB0_small
|
||||
from ppcls.arch.backbone.model_zoo.resnest import ResNeSt50_fast_1s1x64d, ResNeSt50, ResNeSt101
|
||||
from ppcls.arch.backbone.model_zoo.googlenet import GoogLeNet
|
||||
from ppcls.arch.backbone.model_zoo.mobilenet_v2 import MobileNetV2_x0_25, MobileNetV2_x0_5, MobileNetV2_x0_75, MobileNetV2, MobileNetV2_x1_5, MobileNetV2_x2_0
|
||||
from ppcls.arch.backbone.model_zoo.shufflenet_v2 import ShuffleNetV2_x0_25, ShuffleNetV2_x0_33, ShuffleNetV2_x0_5, ShuffleNetV2_x1_0, ShuffleNetV2_x1_5, ShuffleNetV2_x2_0, ShuffleNetV2_swish
|
||||
from ppcls.arch.backbone.model_zoo.ghostnet import GhostNet_x0_5, GhostNet_x1_0, GhostNet_x1_3
|
||||
from ppcls.arch.backbone.model_zoo.alexnet import AlexNet
|
||||
from ppcls.arch.backbone.model_zoo.inception_v4 import InceptionV4
|
||||
from ppcls.arch.backbone.model_zoo.xception import Xception41, Xception65, Xception71
|
||||
from ppcls.arch.backbone.model_zoo.xception_deeplab import Xception41_deeplab, Xception65_deeplab
|
||||
from ppcls.arch.backbone.model_zoo.resnext101_wsl import ResNeXt101_32x8d_wsl, ResNeXt101_32x16d_wsl, ResNeXt101_32x32d_wsl, ResNeXt101_32x48d_wsl
|
||||
from ppcls.arch.backbone.model_zoo.squeezenet import SqueezeNet1_0, SqueezeNet1_1
|
||||
from ppcls.arch.backbone.model_zoo.darknet import DarkNet53
|
||||
from ppcls.arch.backbone.model_zoo.regnet import RegNetX_200MF, RegNetX_4GF, RegNetX_32GF, RegNetY_200MF, RegNetY_4GF, RegNetY_32GF
|
||||
from ppcls.arch.backbone.model_zoo.vision_transformer import ViT_small_patch16_224, ViT_base_patch16_224, ViT_base_patch16_384, ViT_base_patch32_384, ViT_large_patch16_224, ViT_large_patch16_384, ViT_large_patch32_384
|
||||
from ppcls.arch.backbone.model_zoo.distilled_vision_transformer import DeiT_tiny_patch16_224, DeiT_small_patch16_224, DeiT_base_patch16_224, DeiT_tiny_distilled_patch16_224, DeiT_small_distilled_patch16_224, DeiT_base_distilled_patch16_224, DeiT_base_patch16_384, DeiT_base_distilled_patch16_384
|
||||
from ppcls.arch.backbone.legendary_models.swin_transformer import SwinTransformer_tiny_patch4_window7_224, SwinTransformer_small_patch4_window7_224, SwinTransformer_base_patch4_window7_224, SwinTransformer_base_patch4_window12_384, SwinTransformer_large_patch4_window7_224, SwinTransformer_large_patch4_window12_384
|
||||
from ppcls.arch.backbone.model_zoo.cswin_transformer import CSWinTransformer_tiny_224, CSWinTransformer_small_224, CSWinTransformer_base_224, CSWinTransformer_large_224, CSWinTransformer_base_384, CSWinTransformer_large_384
|
||||
from ppcls.arch.backbone.model_zoo.mixnet import MixNet_S, MixNet_M, MixNet_L
|
||||
from ppcls.arch.backbone.model_zoo.rexnet import ReXNet_1_0, ReXNet_1_3, ReXNet_1_5, ReXNet_2_0, ReXNet_3_0
|
||||
from ppcls.arch.backbone.model_zoo.gvt import pcpvt_small, pcpvt_base, pcpvt_large, alt_gvt_small, alt_gvt_base, alt_gvt_large
|
||||
from ppcls.arch.backbone.model_zoo.levit import LeViT_128S, LeViT_128, LeViT_192, LeViT_256, LeViT_384
|
||||
from ppcls.arch.backbone.model_zoo.dla import DLA34, DLA46_c, DLA46x_c, DLA60, DLA60x, DLA60x_c, DLA102, DLA102x, DLA102x2, DLA169
|
||||
from ppcls.arch.backbone.model_zoo.rednet import RedNet26, RedNet38, RedNet50, RedNet101, RedNet152
|
||||
from ppcls.arch.backbone.model_zoo.tnt import TNT_small
|
||||
from ppcls.arch.backbone.model_zoo.hardnet import HarDNet68, HarDNet85, HarDNet39_ds, HarDNet68_ds
|
||||
from ppcls.arch.backbone.model_zoo.cspnet import CSPDarkNet53
|
||||
from ppcls.arch.backbone.model_zoo.pvt_v2 import PVT_V2_B0, PVT_V2_B1, PVT_V2_B2_Linear, PVT_V2_B2, PVT_V2_B3, PVT_V2_B4, PVT_V2_B5
|
||||
from ppcls.arch.backbone.model_zoo.mobilevit import MobileViT_XXS, MobileViT_XS, MobileViT_S
|
||||
from ppcls.arch.backbone.model_zoo.repvgg import RepVGG_A0, RepVGG_A1, RepVGG_A2, RepVGG_B0, RepVGG_B1, RepVGG_B2, RepVGG_B1g2, RepVGG_B1g4, RepVGG_B2g4, RepVGG_B3g4
|
||||
from ppcls.arch.backbone.model_zoo.van import VAN_tiny
|
||||
from ppcls.arch.backbone.model_zoo.peleenet import PeleeNet
|
||||
from ppcls.arch.backbone.model_zoo.convnext import ConvNeXt_tiny
|
||||
from .model_zoo.resnet_vc import ResNet50_vc
|
||||
from .model_zoo.resnext import ResNeXt50_32x4d, ResNeXt50_64x4d, ResNeXt101_32x4d, ResNeXt101_64x4d, ResNeXt152_32x4d, ResNeXt152_64x4d
|
||||
from .model_zoo.resnext_vd import ResNeXt50_vd_32x4d, ResNeXt50_vd_64x4d, ResNeXt101_vd_32x4d, ResNeXt101_vd_64x4d, ResNeXt152_vd_32x4d, ResNeXt152_vd_64x4d
|
||||
from .model_zoo.res2net import Res2Net50_26w_4s, Res2Net50_14w_8s
|
||||
from .model_zoo.res2net_vd import Res2Net50_vd_26w_4s, Res2Net101_vd_26w_4s, Res2Net200_vd_26w_4s
|
||||
from .model_zoo.se_resnet_vd import SE_ResNet18_vd, SE_ResNet34_vd, SE_ResNet50_vd
|
||||
from .model_zoo.se_resnext_vd import SE_ResNeXt50_vd_32x4d, SE_ResNeXt50_vd_32x4d, SENet154_vd
|
||||
from .model_zoo.se_resnext import SE_ResNeXt50_32x4d, SE_ResNeXt101_32x4d, SE_ResNeXt152_64x4d
|
||||
from .model_zoo.dpn import DPN68, DPN92, DPN98, DPN107, DPN131
|
||||
from .model_zoo.densenet import DenseNet121, DenseNet161, DenseNet169, DenseNet201, DenseNet264
|
||||
from .model_zoo.efficientnet import EfficientNetB0, EfficientNetB1, EfficientNetB2, EfficientNetB3, EfficientNetB4, EfficientNetB5, EfficientNetB6, EfficientNetB7, EfficientNetB0_small
|
||||
from .model_zoo.resnest import ResNeSt50_fast_1s1x64d, ResNeSt50, ResNeSt101
|
||||
from .model_zoo.googlenet import GoogLeNet
|
||||
from .model_zoo.mobilenet_v2 import MobileNetV2_x0_25, MobileNetV2_x0_5, MobileNetV2_x0_75, MobileNetV2, MobileNetV2_x1_5, MobileNetV2_x2_0
|
||||
from .model_zoo.shufflenet_v2 import ShuffleNetV2_x0_25, ShuffleNetV2_x0_33, ShuffleNetV2_x0_5, ShuffleNetV2_x1_0, ShuffleNetV2_x1_5, ShuffleNetV2_x2_0, ShuffleNetV2_swish
|
||||
from .model_zoo.ghostnet import GhostNet_x0_5, GhostNet_x1_0, GhostNet_x1_3
|
||||
from .model_zoo.alexnet import AlexNet
|
||||
from .model_zoo.inception_v4 import InceptionV4
|
||||
from .model_zoo.xception import Xception41, Xception65, Xception71
|
||||
from .model_zoo.xception_deeplab import Xception41_deeplab, Xception65_deeplab
|
||||
from .model_zoo.resnext101_wsl import ResNeXt101_32x8d_wsl, ResNeXt101_32x16d_wsl, ResNeXt101_32x32d_wsl, ResNeXt101_32x48d_wsl
|
||||
from .model_zoo.squeezenet import SqueezeNet1_0, SqueezeNet1_1
|
||||
from .model_zoo.darknet import DarkNet53
|
||||
from .model_zoo.regnet import RegNetX_200MF, RegNetX_4GF, RegNetX_32GF, RegNetY_200MF, RegNetY_4GF, RegNetY_32GF
|
||||
from .model_zoo.vision_transformer import ViT_small_patch16_224, ViT_base_patch16_224, ViT_base_patch16_384, ViT_base_patch32_384, ViT_large_patch16_224, ViT_large_patch16_384, ViT_large_patch32_384
|
||||
from .model_zoo.distilled_vision_transformer import DeiT_tiny_patch16_224, DeiT_small_patch16_224, DeiT_base_patch16_224, DeiT_tiny_distilled_patch16_224, DeiT_small_distilled_patch16_224, DeiT_base_distilled_patch16_224, DeiT_base_patch16_384, DeiT_base_distilled_patch16_384
|
||||
from .legendary_models.swin_transformer import SwinTransformer_tiny_patch4_window7_224, SwinTransformer_small_patch4_window7_224, SwinTransformer_base_patch4_window7_224, SwinTransformer_base_patch4_window12_384, SwinTransformer_large_patch4_window7_224, SwinTransformer_large_patch4_window12_384
|
||||
from .model_zoo.cswin_transformer import CSWinTransformer_tiny_224, CSWinTransformer_small_224, CSWinTransformer_base_224, CSWinTransformer_large_224, CSWinTransformer_base_384, CSWinTransformer_large_384
|
||||
from .model_zoo.mixnet import MixNet_S, MixNet_M, MixNet_L
|
||||
from .model_zoo.rexnet import ReXNet_1_0, ReXNet_1_3, ReXNet_1_5, ReXNet_2_0, ReXNet_3_0
|
||||
from .model_zoo.gvt import pcpvt_small, pcpvt_base, pcpvt_large, alt_gvt_small, alt_gvt_base, alt_gvt_large
|
||||
from .model_zoo.levit import LeViT_128S, LeViT_128, LeViT_192, LeViT_256, LeViT_384
|
||||
from .model_zoo.dla import DLA34, DLA46_c, DLA46x_c, DLA60, DLA60x, DLA60x_c, DLA102, DLA102x, DLA102x2, DLA169
|
||||
from .model_zoo.rednet import RedNet26, RedNet38, RedNet50, RedNet101, RedNet152
|
||||
from .model_zoo.tnt import TNT_small
|
||||
from .model_zoo.hardnet import HarDNet68, HarDNet85, HarDNet39_ds, HarDNet68_ds
|
||||
from .model_zoo.cspnet import CSPDarkNet53
|
||||
from .model_zoo.pvt_v2 import PVT_V2_B0, PVT_V2_B1, PVT_V2_B2_Linear, PVT_V2_B2, PVT_V2_B3, PVT_V2_B4, PVT_V2_B5
|
||||
from .model_zoo.mobilevit import MobileViT_XXS, MobileViT_XS, MobileViT_S
|
||||
from .model_zoo.repvgg import RepVGG_A0, RepVGG_A1, RepVGG_A2, RepVGG_B0, RepVGG_B1, RepVGG_B2, RepVGG_B1g2, RepVGG_B1g4, RepVGG_B2g4, RepVGG_B3g4
|
||||
from .model_zoo.van import VAN_tiny
|
||||
from .model_zoo.peleenet import PeleeNet
|
||||
from .model_zoo.convnext import ConvNeXt_tiny
|
||||
|
||||
from ppcls.arch.backbone.variant_models.resnet_variant import ResNet50_last_stage_stride1
|
||||
from ppcls.arch.backbone.variant_models.vgg_variant import VGG19Sigmoid
|
||||
from ppcls.arch.backbone.variant_models.pp_lcnet_variant import PPLCNet_x2_5_Tanh
|
||||
from ppcls.arch.backbone.model_zoo.adaface_ir_net import AdaFace_IR_18, AdaFace_IR_34, AdaFace_IR_50, AdaFace_IR_101, AdaFace_IR_152, AdaFace_IR_SE_50, AdaFace_IR_SE_101, AdaFace_IR_SE_152, AdaFace_IR_SE_200
|
||||
from .variant_models.resnet_variant import ResNet50_last_stage_stride1
|
||||
from .variant_models.vgg_variant import VGG19Sigmoid
|
||||
from .variant_models.pp_lcnet_variant import PPLCNet_x2_5_Tanh
|
||||
from .model_zoo.adaface_ir_net import AdaFace_IR_18, AdaFace_IR_34, AdaFace_IR_50, AdaFace_IR_101, AdaFace_IR_152, AdaFace_IR_SE_50, AdaFace_IR_SE_101, AdaFace_IR_SE_152, AdaFace_IR_SE_200
|
||||
|
||||
|
||||
# help whl get all the models' api (class type) and components' api (func type)
|
||||
|
|
|
@ -15,7 +15,7 @@
|
|||
from typing import Tuple, List, Dict, Union, Callable, Any
|
||||
|
||||
from paddle import nn
|
||||
from ppcls.utils import logger
|
||||
from ....utils import logger
|
||||
|
||||
|
||||
class Identity(nn.Layer):
|
||||
|
|
|
@ -22,8 +22,8 @@ from paddle.nn import AdaptiveAvgPool2D, MaxPool2D
|
|||
from paddle.nn.initializer import KaimingNormal
|
||||
from paddle.regularizer import L2Decay
|
||||
|
||||
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ..base.theseus_layer import TheseusLayer
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"ESNet_x0_25":
|
||||
|
|
|
@ -25,8 +25,8 @@ from paddle import ParamAttr
|
|||
from paddle.nn.functional import upsample
|
||||
from paddle.nn.initializer import Uniform
|
||||
|
||||
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer, Identity
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ..base.theseus_layer import TheseusLayer, Identity
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"HRNet_W18_C":
|
||||
|
|
|
@ -23,8 +23,8 @@ from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
|
|||
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
|
||||
from paddle.nn.initializer import Uniform
|
||||
|
||||
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ..base.theseus_layer import TheseusLayer
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"InceptionV3":
|
||||
|
|
|
@ -22,8 +22,8 @@ from paddle.nn import Conv2D, BatchNorm, Linear, ReLU, Flatten
|
|||
from paddle.nn import AdaptiveAvgPool2D
|
||||
from paddle.nn.initializer import KaimingNormal
|
||||
|
||||
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ..base.theseus_layer import TheseusLayer
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"MobileNetV1_x0_25":
|
||||
|
|
|
@ -21,8 +21,9 @@ import paddle.nn as nn
|
|||
from paddle import ParamAttr
|
||||
from paddle.nn import AdaptiveAvgPool2D, BatchNorm, Conv2D, Dropout, Linear
|
||||
from paddle.regularizer import L2Decay
|
||||
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
from ..base.theseus_layer import TheseusLayer
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"MobileNetV3_small_x0_35":
|
||||
|
|
|
@ -20,8 +20,8 @@ from paddle.nn import Conv2D, BatchNorm2D, ReLU, AdaptiveAvgPool2D, MaxPool2D
|
|||
from paddle.regularizer import L2Decay
|
||||
from paddle import ParamAttr
|
||||
|
||||
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ..base.theseus_layer import TheseusLayer
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"PPHGNet_tiny":
|
||||
|
@ -199,6 +199,7 @@ class PPHGNet(TheseusLayer):
|
|||
Returns:
|
||||
model: nn.Layer. Specific PPHGNet model depends on args.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
stem_channels,
|
||||
stage_config,
|
||||
|
@ -230,7 +231,7 @@ class PPHGNet(TheseusLayer):
|
|||
k]
|
||||
self.stages.append(
|
||||
HG_Stage(in_channels, mid_channels, out_channels, block_num,
|
||||
layer_num, downsample))
|
||||
layer_num, downsample))
|
||||
|
||||
self.avg_pool = AdaptiveAvgPool2D(1)
|
||||
if self.use_last_conv:
|
||||
|
|
|
@ -20,8 +20,9 @@ from paddle import ParamAttr
|
|||
from paddle.nn import AdaptiveAvgPool2D, BatchNorm2D, Conv2D, Dropout, Linear
|
||||
from paddle.regularizer import L2Decay
|
||||
from paddle.nn.initializer import KaimingNormal
|
||||
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
from ..base.theseus_layer import TheseusLayer
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"PPLCNet_x0_25":
|
||||
|
@ -229,64 +230,59 @@ class PPLCNet(TheseusLayer):
|
|||
stride=stride_list[0],
|
||||
lr_mult=self.lr_mult_list[0])
|
||||
|
||||
self.blocks2 = nn.Sequential(*[
|
||||
self.blocks2 = nn.Sequential(* [
|
||||
DepthwiseSeparable(
|
||||
num_channels=make_divisible(in_c * scale),
|
||||
num_filters=make_divisible(out_c * scale),
|
||||
dw_size=k,
|
||||
stride=s,
|
||||
use_se=se,
|
||||
lr_mult=self.lr_mult_list[1])
|
||||
for i, (k, in_c, out_c, s, se
|
||||
) in enumerate(self.net_config["blocks2"])
|
||||
lr_mult=self.lr_mult_list[1]) for i, (k, in_c, out_c, s, se) in
|
||||
enumerate(self.net_config["blocks2"])
|
||||
])
|
||||
|
||||
self.blocks3 = nn.Sequential(*[
|
||||
self.blocks3 = nn.Sequential(* [
|
||||
DepthwiseSeparable(
|
||||
num_channels=make_divisible(in_c * scale),
|
||||
num_filters=make_divisible(out_c * scale),
|
||||
dw_size=k,
|
||||
stride=s,
|
||||
use_se=se,
|
||||
lr_mult=self.lr_mult_list[2])
|
||||
for i, (k, in_c, out_c, s, se
|
||||
) in enumerate(self.net_config["blocks3"])
|
||||
lr_mult=self.lr_mult_list[2]) for i, (k, in_c, out_c, s, se) in
|
||||
enumerate(self.net_config["blocks3"])
|
||||
])
|
||||
|
||||
self.blocks4 = nn.Sequential(*[
|
||||
self.blocks4 = nn.Sequential(* [
|
||||
DepthwiseSeparable(
|
||||
num_channels=make_divisible(in_c * scale),
|
||||
num_filters=make_divisible(out_c * scale),
|
||||
dw_size=k,
|
||||
stride=s,
|
||||
use_se=se,
|
||||
lr_mult=self.lr_mult_list[3])
|
||||
for i, (k, in_c, out_c, s, se
|
||||
) in enumerate(self.net_config["blocks4"])
|
||||
lr_mult=self.lr_mult_list[3]) for i, (k, in_c, out_c, s, se) in
|
||||
enumerate(self.net_config["blocks4"])
|
||||
])
|
||||
|
||||
self.blocks5 = nn.Sequential(*[
|
||||
self.blocks5 = nn.Sequential(* [
|
||||
DepthwiseSeparable(
|
||||
num_channels=make_divisible(in_c * scale),
|
||||
num_filters=make_divisible(out_c * scale),
|
||||
dw_size=k,
|
||||
stride=s,
|
||||
use_se=se,
|
||||
lr_mult=self.lr_mult_list[4])
|
||||
for i, (k, in_c, out_c, s, se
|
||||
) in enumerate(self.net_config["blocks5"])
|
||||
lr_mult=self.lr_mult_list[4]) for i, (k, in_c, out_c, s, se) in
|
||||
enumerate(self.net_config["blocks5"])
|
||||
])
|
||||
|
||||
self.blocks6 = nn.Sequential(*[
|
||||
self.blocks6 = nn.Sequential(* [
|
||||
DepthwiseSeparable(
|
||||
num_channels=make_divisible(in_c * scale),
|
||||
num_filters=make_divisible(out_c * scale),
|
||||
dw_size=k,
|
||||
stride=s,
|
||||
use_se=se,
|
||||
lr_mult=self.lr_mult_list[5])
|
||||
for i, (k, in_c, out_c, s, se
|
||||
) in enumerate(self.net_config["blocks6"])
|
||||
lr_mult=self.lr_mult_list[5]) for i, (k, in_c, out_c, s, se) in
|
||||
enumerate(self.net_config["blocks6"])
|
||||
])
|
||||
|
||||
self.avg_pool = AdaptiveAvgPool2D(1)
|
||||
|
|
|
@ -21,8 +21,9 @@ from paddle import ParamAttr
|
|||
from paddle.nn import AdaptiveAvgPool2D, BatchNorm2D, Conv2D, Dropout, Linear
|
||||
from paddle.regularizer import L2Decay
|
||||
from paddle.nn.initializer import KaimingNormal
|
||||
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
from ..base.theseus_layer import TheseusLayer
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"PPLCNetV2_base":
|
||||
|
|
|
@ -26,9 +26,9 @@ from paddle.nn.initializer import Uniform
|
|||
from paddle.regularizer import L2Decay
|
||||
import math
|
||||
|
||||
from ppcls.utils import logger
|
||||
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils import logger
|
||||
from ..base.theseus_layer import TheseusLayer
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"ResNet18":
|
||||
|
@ -328,7 +328,7 @@ class ResNet(TheseusLayer):
|
|||
[32, 32, 3, 1], [32, 64, 3, 1]]
|
||||
}
|
||||
|
||||
self.stem = nn.Sequential(*[
|
||||
self.stem = nn.Sequential(* [
|
||||
ConvBNLayer(
|
||||
num_channels=in_c,
|
||||
num_filters=out_c,
|
||||
|
|
|
@ -21,9 +21,9 @@ import paddle.nn as nn
|
|||
import paddle.nn.functional as F
|
||||
from paddle.nn.initializer import TruncatedNormal, Constant
|
||||
|
||||
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
|
||||
from ppcls.arch.backbone.model_zoo.vision_transformer import trunc_normal_, zeros_, ones_, to_2tuple, DropPath, Identity
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ..model_zoo.vision_transformer import trunc_normal_, zeros_, ones_, to_2tuple, DropPath, Identity
|
||||
from ..base.theseus_layer import TheseusLayer
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"SwinTransformer_tiny_patch4_window7_224":
|
||||
|
|
|
@ -20,8 +20,8 @@ import paddle.nn as nn
|
|||
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
|
||||
from paddle.nn import MaxPool2D
|
||||
|
||||
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ..base.theseus_layer import TheseusLayer
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"VGG11":
|
||||
|
|
|
@ -23,7 +23,7 @@ from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
|
|||
from paddle.nn.initializer import Uniform
|
||||
import math
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"AlexNet":
|
||||
|
|
|
@ -18,7 +18,7 @@ import paddle
|
|||
import paddle.nn as nn
|
||||
from paddle.nn.initializer import TruncatedNormal, Constant
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"ConvNeXt_tiny": "", # TODO
|
||||
|
@ -176,7 +176,7 @@ class ConvNeXt(nn.Layer):
|
|||
]
|
||||
cur = 0
|
||||
for i in range(4):
|
||||
stage = nn.Sequential(*[
|
||||
stage = nn.Sequential(* [
|
||||
Block(
|
||||
dim=dims[i],
|
||||
drop_path=dp_rates[cur + j],
|
||||
|
|
|
@ -20,7 +20,7 @@ import paddle.nn as nn
|
|||
import paddle.nn.functional as F
|
||||
from paddle import ParamAttr
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"CSPDarkNet53":
|
||||
|
|
|
@ -21,7 +21,7 @@ import paddle
|
|||
import paddle.nn as nn
|
||||
from .vision_transformer import trunc_normal_, zeros_, ones_, to_2tuple, DropPath, Identity
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"CSWinTransformer_tiny_224":
|
||||
|
|
|
@ -23,7 +23,7 @@ from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
|
|||
from paddle.nn.initializer import Uniform
|
||||
import math
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"DarkNet53":
|
||||
|
|
|
@ -28,7 +28,7 @@ from paddle.nn.initializer import Uniform
|
|||
|
||||
import math
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"DenseNet121":
|
||||
|
|
|
@ -19,7 +19,7 @@ import paddle
|
|||
import paddle.nn as nn
|
||||
from .vision_transformer import VisionTransformer, Identity, trunc_normal_, zeros_
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"DeiT_tiny_patch16_224":
|
||||
|
|
|
@ -23,8 +23,8 @@ import paddle.nn.functional as F
|
|||
|
||||
from paddle.nn.initializer import Normal, Constant
|
||||
|
||||
from ppcls.arch.backbone.base.theseus_layer import Identity
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ..base.theseus_layer import Identity
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"DLA34":
|
||||
|
|
|
@ -29,7 +29,7 @@ from paddle.nn.initializer import Uniform
|
|||
|
||||
import math
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"DPN68":
|
||||
|
|
|
@ -26,7 +26,7 @@ import collections
|
|||
import re
|
||||
import copy
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"EfficientNetB0_small":
|
||||
|
|
|
@ -24,7 +24,7 @@ from paddle.nn import Conv2D, BatchNorm, AdaptiveAvgPool2D, Linear
|
|||
from paddle.regularizer import L2Decay
|
||||
from paddle.nn.initializer import Uniform, KaimingNormal
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"GhostNet_x0_5":
|
||||
|
|
|
@ -24,7 +24,7 @@ from paddle.nn.initializer import Uniform
|
|||
|
||||
import math
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"GoogLeNet":
|
||||
|
|
|
@ -25,7 +25,7 @@ from paddle.regularizer import L2Decay
|
|||
from .vision_transformer import trunc_normal_, normal_, zeros_, ones_, to_2tuple, DropPath, Identity, Mlp
|
||||
from .vision_transformer import Block as ViTBlock
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"pcpvt_small":
|
||||
|
|
|
@ -18,7 +18,7 @@
|
|||
import paddle
|
||||
import paddle.nn as nn
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
'HarDNet39_ds':
|
||||
|
|
|
@ -23,7 +23,7 @@ from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
|
|||
from paddle.nn.initializer import Uniform
|
||||
import math
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"InceptionV4":
|
||||
|
|
|
@ -27,7 +27,7 @@ from paddle.regularizer import L2Decay
|
|||
|
||||
from .vision_transformer import trunc_normal_, zeros_, ones_, Identity
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"LeViT_128S":
|
||||
|
|
|
@ -20,7 +20,7 @@ from functools import reduce
|
|||
import paddle
|
||||
import paddle.nn as nn
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"MixNet_S":
|
||||
|
|
|
@ -28,7 +28,7 @@ from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
|
|||
|
||||
import math
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"MobileNetV2_x0_25":
|
||||
|
|
|
@ -23,7 +23,7 @@ import paddle.nn.functional as F
|
|||
from paddle.nn.initializer import KaimingUniform, TruncatedNormal, Constant
|
||||
import math
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"MobileViT_XXS":
|
||||
|
|
|
@ -22,7 +22,7 @@ import paddle.nn as nn
|
|||
import paddle.nn.functional as F
|
||||
from paddle.nn.initializer import Normal, Constant
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"PeleeNet": "" # TODO
|
||||
|
@ -37,7 +37,8 @@ ones_ = Constant(value=1.)
|
|||
|
||||
|
||||
class _DenseLayer(nn.Layer):
|
||||
def __init__(self, num_input_features, growth_rate, bottleneck_width, drop_rate):
|
||||
def __init__(self, num_input_features, growth_rate, bottleneck_width,
|
||||
drop_rate):
|
||||
super(_DenseLayer, self).__init__()
|
||||
|
||||
growth_rate = int(growth_rate / 2)
|
||||
|
@ -71,11 +72,12 @@ class _DenseLayer(nn.Layer):
|
|||
|
||||
|
||||
class _DenseBlock(nn.Sequential):
|
||||
def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate):
|
||||
def __init__(self, num_layers, num_input_features, bn_size, growth_rate,
|
||||
drop_rate):
|
||||
super(_DenseBlock, self).__init__()
|
||||
for i in range(num_layers):
|
||||
layer = _DenseLayer(num_input_features + i *
|
||||
growth_rate, growth_rate, bn_size, drop_rate)
|
||||
layer = _DenseLayer(num_input_features + i * growth_rate,
|
||||
growth_rate, bn_size, drop_rate)
|
||||
setattr(self, 'denselayer%d' % (i + 1), layer)
|
||||
|
||||
|
||||
|
@ -83,16 +85,32 @@ class _StemBlock(nn.Layer):
|
|||
def __init__(self, num_input_channels, num_init_features):
|
||||
super(_StemBlock, self).__init__()
|
||||
|
||||
num_stem_features = int(num_init_features/2)
|
||||
num_stem_features = int(num_init_features / 2)
|
||||
|
||||
self.stem1 = BasicConv2D(
|
||||
num_input_channels, num_init_features, kernel_size=3, stride=2, padding=1)
|
||||
num_input_channels,
|
||||
num_init_features,
|
||||
kernel_size=3,
|
||||
stride=2,
|
||||
padding=1)
|
||||
self.stem2a = BasicConv2D(
|
||||
num_init_features, num_stem_features, kernel_size=1, stride=1, padding=0)
|
||||
num_init_features,
|
||||
num_stem_features,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
self.stem2b = BasicConv2D(
|
||||
num_stem_features, num_init_features, kernel_size=3, stride=2, padding=1)
|
||||
num_stem_features,
|
||||
num_init_features,
|
||||
kernel_size=3,
|
||||
stride=2,
|
||||
padding=1)
|
||||
self.stem3 = BasicConv2D(
|
||||
2*num_init_features, num_init_features, kernel_size=1, stride=1, padding=0)
|
||||
2 * num_init_features,
|
||||
num_init_features,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
self.pool = nn.MaxPool2D(kernel_size=2, stride=2)
|
||||
|
||||
def forward(self, x):
|
||||
|
@ -109,11 +127,10 @@ class _StemBlock(nn.Layer):
|
|||
|
||||
|
||||
class BasicConv2D(nn.Layer):
|
||||
|
||||
def __init__(self, in_channels, out_channels, activation=True, **kwargs):
|
||||
super(BasicConv2D, self).__init__()
|
||||
self.conv = nn.Conv2D(in_channels, out_channels,
|
||||
bias_attr=False, **kwargs)
|
||||
self.conv = nn.Conv2D(
|
||||
in_channels, out_channels, bias_attr=False, **kwargs)
|
||||
self.norm = nn.BatchNorm2D(out_channels)
|
||||
self.activation = activation
|
||||
|
||||
|
@ -141,15 +158,18 @@ class PeleeNetDY(nn.Layer):
|
|||
class_num (int) - number of classification classes
|
||||
"""
|
||||
|
||||
def __init__(self, growth_rate=32, block_config=[3, 4, 8, 6],
|
||||
num_init_features=32, bottleneck_width=[1, 2, 4, 4],
|
||||
drop_rate=0.05, class_num=1000):
|
||||
def __init__(self,
|
||||
growth_rate=32,
|
||||
block_config=[3, 4, 8, 6],
|
||||
num_init_features=32,
|
||||
bottleneck_width=[1, 2, 4, 4],
|
||||
drop_rate=0.05,
|
||||
class_num=1000):
|
||||
|
||||
super(PeleeNetDY, self).__init__()
|
||||
|
||||
self.features = nn.Sequential(*[
|
||||
('stemblock', _StemBlock(3, num_init_features)),
|
||||
])
|
||||
self.features = nn.Sequential(* [('stemblock', _StemBlock(
|
||||
3, num_init_features)), ])
|
||||
|
||||
if type(growth_rate) is list:
|
||||
growth_rates = growth_rate
|
||||
|
@ -168,20 +188,31 @@ class PeleeNetDY(nn.Layer):
|
|||
# Each denseblock
|
||||
num_features = num_init_features
|
||||
for i, num_layers in enumerate(block_config):
|
||||
block = _DenseBlock(num_layers=num_layers,
|
||||
num_input_features=num_features,
|
||||
bn_size=bottleneck_widths[i],
|
||||
growth_rate=growth_rates[i],
|
||||
drop_rate=drop_rate)
|
||||
block = _DenseBlock(
|
||||
num_layers=num_layers,
|
||||
num_input_features=num_features,
|
||||
bn_size=bottleneck_widths[i],
|
||||
growth_rate=growth_rates[i],
|
||||
drop_rate=drop_rate)
|
||||
setattr(self.features, 'denseblock%d' % (i + 1), block)
|
||||
num_features = num_features + num_layers * growth_rates[i]
|
||||
|
||||
setattr(self.features, 'transition%d' % (i + 1), BasicConv2D(
|
||||
num_features, num_features, kernel_size=1, stride=1, padding=0))
|
||||
setattr(
|
||||
self.features,
|
||||
'transition%d' % (i + 1),
|
||||
BasicConv2D(
|
||||
num_features,
|
||||
num_features,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0))
|
||||
|
||||
if i != len(block_config) - 1:
|
||||
setattr(self.features, 'transition%d_pool' %
|
||||
(i + 1), nn.AvgPool2D(kernel_size=2, stride=2))
|
||||
setattr(
|
||||
self.features,
|
||||
'transition%d_pool' % (i + 1),
|
||||
nn.AvgPool2D(
|
||||
kernel_size=2, stride=2))
|
||||
num_features = num_features
|
||||
|
||||
# Linear layer
|
||||
|
@ -192,7 +223,8 @@ class PeleeNetDY(nn.Layer):
|
|||
|
||||
def forward(self, x):
|
||||
features = self.features(x)
|
||||
out = F.avg_pool2d(features, kernel_size=features.shape[2:4]).flatten(1)
|
||||
out = F.avg_pool2d(
|
||||
features, kernel_size=features.shape[2:4]).flatten(1)
|
||||
if self.drop_rate > 0:
|
||||
out = F.dropout(out, p=self.drop_rate, training=self.training)
|
||||
out = self.classifier(out)
|
||||
|
|
|
@ -24,7 +24,7 @@ from paddle.nn.initializer import TruncatedNormal, Constant
|
|||
|
||||
from .vision_transformer import trunc_normal_, zeros_, ones_, to_2tuple, DropPath, Identity, drop_path
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"PVT_V2_B0":
|
||||
|
|
|
@ -20,7 +20,7 @@ import paddle.nn as nn
|
|||
|
||||
from paddle.vision.models import resnet
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"RedNet26":
|
||||
|
|
|
@ -29,7 +29,7 @@ from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
|
|||
from paddle.nn.initializer import Uniform
|
||||
import math
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"RegNetX_200MF":
|
||||
|
|
|
@ -19,7 +19,7 @@ import paddle.nn as nn
|
|||
import paddle
|
||||
import numpy as np
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"RepVGG_A0":
|
||||
|
|
|
@ -29,7 +29,7 @@ from paddle.nn.initializer import Uniform
|
|||
|
||||
import math
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"Res2Net50_26w_4s":
|
||||
|
|
|
@ -29,7 +29,7 @@ from paddle.nn.initializer import Uniform
|
|||
|
||||
import math
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"Res2Net50_vd_26w_4s":
|
||||
|
|
|
@ -30,7 +30,7 @@ from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
|
|||
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
|
||||
from paddle.regularizer import L2Decay
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"ResNeSt50_fast_1s1x64d":
|
||||
|
|
|
@ -29,7 +29,7 @@ from paddle.nn.initializer import Uniform
|
|||
|
||||
import math
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"ResNet50_vc":
|
||||
|
|
|
@ -29,7 +29,7 @@ from paddle.nn.initializer import Uniform
|
|||
|
||||
import math
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"ResNeXt50_32x4d":
|
||||
|
|
|
@ -22,7 +22,7 @@ from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
|
|||
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
|
||||
from paddle.nn.initializer import Uniform
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"ResNeXt101_32x8d_wsl":
|
||||
|
|
|
@ -29,7 +29,7 @@ from paddle.nn.initializer import Uniform
|
|||
|
||||
import math
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"ResNeXt50_vd_32x4d":
|
||||
|
|
|
@ -24,7 +24,7 @@ from paddle import ParamAttr
|
|||
import paddle.nn as nn
|
||||
from math import ceil
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"ReXNet_1_0":
|
||||
|
|
|
@ -28,7 +28,7 @@ from paddle.nn.initializer import Uniform
|
|||
|
||||
import math
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"SE_ResNet18_vd":
|
||||
|
|
|
@ -29,7 +29,7 @@ from paddle.nn.initializer import Uniform
|
|||
|
||||
import math
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"SE_ResNeXt50_32x4d":
|
||||
|
|
|
@ -29,7 +29,7 @@ from paddle.nn.initializer import Uniform
|
|||
|
||||
import math
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"SE_ResNeXt50_vd_32x4d":
|
||||
|
|
|
@ -24,7 +24,7 @@ from paddle.nn import Layer, Conv2D, MaxPool2D, AdaptiveAvgPool2D, BatchNorm, Li
|
|||
from paddle.nn.initializer import KaimingNormal
|
||||
from paddle.nn.functional import swish
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"ShuffleNetV2_x0_25":
|
||||
|
|
|
@ -21,7 +21,7 @@ import paddle.nn.functional as F
|
|||
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
|
||||
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"SqueezeNet1_0":
|
||||
|
|
|
@ -23,8 +23,8 @@ import paddle.nn as nn
|
|||
|
||||
from paddle.nn.initializer import TruncatedNormal, Constant
|
||||
|
||||
from ppcls.arch.backbone.base.theseus_layer import Identity
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ..base.theseus_layer import Identity
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"TNT_small":
|
||||
|
|
|
@ -21,7 +21,7 @@ import paddle
|
|||
import paddle.nn as nn
|
||||
from paddle.nn.initializer import TruncatedNormal, Constant
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"VAN_tiny": "", # TODO
|
||||
|
|
|
@ -22,7 +22,7 @@ import paddle
|
|||
import paddle.nn as nn
|
||||
from paddle.nn.initializer import TruncatedNormal, Constant, Normal
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"ViT_small_patch16_224":
|
||||
|
|
|
@ -24,7 +24,7 @@ from paddle.nn.initializer import Uniform
|
|||
import math
|
||||
import sys
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"Xception41":
|
||||
|
|
|
@ -21,7 +21,7 @@ import paddle.nn.functional as F
|
|||
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
|
||||
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"Xception41_deeplab":
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
import paddle
|
||||
from paddle.nn import Sigmoid
|
||||
from paddle.nn import Tanh
|
||||
from ppcls.arch.backbone.legendary_models.pp_lcnet import PPLCNet_x2_5
|
||||
from ..legendary_models.pp_lcnet import PPLCNet_x2_5
|
||||
|
||||
__all__ = ["PPLCNet_x2_5_Tanh"]
|
||||
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
from paddle.nn import Conv2D
|
||||
from ppcls.arch.backbone.legendary_models.resnet import ResNet50, MODEL_URLS, _load_pretrained
|
||||
from ..legendary_models.resnet import ResNet50, MODEL_URLS, _load_pretrained
|
||||
|
||||
__all__ = ["ResNet50_last_stage_stride1"]
|
||||
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
import paddle
|
||||
from paddle.nn import Sigmoid
|
||||
from ppcls.arch.backbone.legendary_models.vgg import VGG19
|
||||
from ..legendary_models.vgg import VGG19
|
||||
|
||||
__all__ = ["VGG19Sigmoid"]
|
||||
|
||||
|
|
|
@ -17,7 +17,7 @@ from __future__ import absolute_import, division, print_function
|
|||
import paddle
|
||||
import paddle.nn as nn
|
||||
|
||||
from ppcls.arch.utils import get_param_attr_dict
|
||||
from ..utils import get_param_attr_dict
|
||||
|
||||
|
||||
class BNNeck(nn.Layer):
|
||||
|
|
|
@ -19,7 +19,7 @@ from __future__ import print_function
|
|||
import paddle
|
||||
import paddle.nn as nn
|
||||
|
||||
from ppcls.arch.utils import get_param_attr_dict
|
||||
from ..utils import get_param_attr_dict
|
||||
|
||||
|
||||
class FC(nn.Layer):
|
||||
|
|
|
@ -12,5 +12,5 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from ppcls.arch.slim.prune import prune_model
|
||||
from ppcls.arch.slim.quant import quantize_model
|
||||
from .prune import prune_model
|
||||
from .quant import quantize_model
|
||||
|
|
|
@ -14,7 +14,7 @@
|
|||
|
||||
from __future__ import absolute_import, division, print_function
|
||||
import paddle
|
||||
from ppcls.utils import logger
|
||||
from ...utils import logger
|
||||
|
||||
|
||||
def prune_model(config, model):
|
||||
|
@ -37,7 +37,6 @@ def prune_model(config, model):
|
|||
model.pruner = None
|
||||
|
||||
|
||||
|
||||
def _prune_model(config, model):
|
||||
from paddleslim.analysis import dygraph_flops as flops
|
||||
logger.info("FLOPs before pruning: {}GFLOPs".format(
|
||||
|
|
|
@ -14,7 +14,7 @@
|
|||
|
||||
from __future__ import absolute_import, division, print_function
|
||||
import paddle
|
||||
from ppcls.utils import logger
|
||||
from ...utils import logger
|
||||
|
||||
QUANT_CONFIG = {
|
||||
# weight preprocess type, default is None and no preprocessing is performed.
|
||||
|
|
|
@ -22,8 +22,8 @@ import sys
|
|||
import paddle
|
||||
from paddle import is_compiled_with_cuda
|
||||
|
||||
from ppcls.arch.utils import get_architectures, similar_architectures, get_blacklist_model_in_static_mode
|
||||
from ppcls.utils import logger
|
||||
from ..arch.utils import get_architectures, similar_architectures, get_blacklist_model_in_static_mode
|
||||
from . import logger
|
||||
|
||||
|
||||
def check_version():
|
||||
|
|
|
@ -16,8 +16,9 @@ import os
|
|||
import copy
|
||||
import argparse
|
||||
import yaml
|
||||
from ppcls.utils import logger
|
||||
from ppcls.utils import check
|
||||
from . import logger
|
||||
from . import check
|
||||
|
||||
__all__ = ['get_config']
|
||||
|
||||
|
||||
|
|
|
@ -28,7 +28,7 @@ import time
|
|||
from collections import OrderedDict
|
||||
from tqdm import tqdm
|
||||
|
||||
from ppcls.utils import logger
|
||||
from . import logger
|
||||
|
||||
__all__ = ['get_weights_path_from_url']
|
||||
|
||||
|
|
|
@ -20,12 +20,12 @@ import sys
|
|||
__dir__ = os.path.dirname(os.path.abspath(__file__))
|
||||
sys.path.append(os.path.abspath(os.path.join(__dir__, '../../')))
|
||||
|
||||
from ppcls.arch import build_model
|
||||
from ppcls.utils.config import parse_config, parse_args
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain
|
||||
from ppcls.utils.logger import init_logger
|
||||
from ppcls.data import create_operators
|
||||
from ppcls.arch.slim import quantize_model
|
||||
from ..arch import build_model
|
||||
from .config import parse_config, parse_args
|
||||
from .save_load import load_dygraph_pretrain
|
||||
from .logger import init_logger
|
||||
from ..data import create_operators
|
||||
from ..arch.slim import quantize_model
|
||||
|
||||
|
||||
class GalleryLayer(paddle.nn.Layer):
|
||||
|
|
|
@ -23,8 +23,8 @@ import tarfile
|
|||
import tqdm
|
||||
import zipfile
|
||||
|
||||
from ppcls.arch.utils import similar_architectures
|
||||
from ppcls.utils import logger
|
||||
from ..arch.utils import similar_architectures
|
||||
from . import logger
|
||||
|
||||
__all__ = ['get']
|
||||
|
||||
|
|
|
@ -20,7 +20,7 @@ import errno
|
|||
import os
|
||||
|
||||
import paddle
|
||||
from ppcls.utils import logger
|
||||
from . import logger
|
||||
from .download import get_weights_path_from_url
|
||||
|
||||
__all__ = ['init_model', 'save_model', 'load_dygraph_pretrain']
|
||||
|
|
Loading…
Reference in New Issue