mirror of
https://github.com/PaddlePaddle/PaddleClas.git
synced 2025-06-03 21:55:06 +08:00
add speed to vits
This commit is contained in:
parent
54b723983f
commit
2b0daeff7d
@ -330,28 +330,28 @@ ResNeSt 与 RegNet 系列模型的精度、速度指标如下表所示,更多
|
||||
ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模型的精度、速度指标如下表所示. 更多关于该系列模型的介绍可以参考: [ViT_and_DeiT 系列模型文档](../models/ViT_and_DeiT.md)。
|
||||
|
||||
|
||||
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|
||||
|------------------------|-----------|-----------|------------------|------------------|----------|------------------------|------------------------|------------------------|
|
||||
| ViT_small_<br/>patch16_224 | 0.7769 | 0.9342 | - | - | 9.41 | 48.60 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_small_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_small_patch16_224_infer.tar) |
|
||||
| ViT_base_<br/>patch16_224 | 0.8195 | 0.9617 | - | - | 16.85 | 86.42 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_base_patch16_224_infer.tar) |
|
||||
| ViT_base_<br/>patch16_384 | 0.8414 | 0.9717 | - | - | 49.35 | 86.42 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch16_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_base_patch16_384_infer.tar) |
|
||||
| ViT_base_<br/>patch32_384 | 0.8176 | 0.9613 | - | - | 12.66 | 88.19 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch32_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_base_patch32_384_infer.tar) |
|
||||
| ViT_large_<br/>patch16_224 | 0.8323 | 0.9650 | - | - | 59.65 | 304.12 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_large_patch16_224_infer.tar) |
|
||||
|ViT_large_<br/>patch16_384| 0.8513 | 0.9736 | - | - | 174.70 | 304.12 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_large_patch16_384_infer.tar) |
|
||||
|ViT_large_<br/>patch32_384| 0.8153 | 0.9608 | - | - | 44.24 | 306.48 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch32_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_large_patch32_384_infer.tar) |
|
||||
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|
||||
|------------------------|-----------|-----------|------------------|------------------|----------|------------------------|------------------------|------------------------|------------------------|
|
||||
| ViT_small_<br/>patch16_224 | 0.7769 | 0.9342 | 3.71 | 9.05 | 16.72 | 9.41 | 48.60 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_small_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_small_patch16_224_infer.tar) |
|
||||
| ViT_base_<br/>patch16_224 | 0.8195 | 0.9617 | 6.12 | 14.84 | 28.51 | 16.85 | 86.42 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_base_patch16_224_infer.tar) |
|
||||
| ViT_base_<br/>patch16_384 | 0.8414 | 0.9717 | 14.15 | 48.38 | 95.06 | 49.35 | 86.42 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch16_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_base_patch16_384_infer.tar) |
|
||||
| ViT_base_<br/>patch32_384 | 0.8176 | 0.9613 | 4.94 | 13.43 | 24.08 | 12.66 | 88.19 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_base_patch32_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_base_patch32_384_infer.tar) |
|
||||
| ViT_large_<br/>patch16_224 | 0.8323 | 0.9650 | 15.53 | 49.50 | 94.09 | 59.65 | 304.12 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_large_patch16_224_infer.tar) |
|
||||
|ViT_large_<br/>patch16_384| 0.8513 | 0.9736 | 39.51 | 152.46 | 304.06 | 174.70 | 304.12 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch16_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_large_patch16_384_infer.tar) |
|
||||
|ViT_large_<br/>patch32_384| 0.8153 | 0.9608 | 11.44 | 36.09 | 70.63 | 44.24 | 306.48 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/ViT_large_patch32_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/ViT_large_patch32_384_infer.tar) |
|
||||
|
||||
|
||||
|
||||
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|
||||
|------------------------|-----------|-----------|------------------|------------------|----------|------------------------|------------------------|------------------------|
|
||||
| DeiT_tiny_<br>patch16_224 | 0.718 | 0.910 | - | - | 1.07 | 5.68 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_tiny_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_tiny_patch16_224_infer.tar) |
|
||||
| DeiT_small_<br>patch16_224 | 0.796 | 0.949 | - | - | 4.24 | 21.97 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_small_patch16_224_infer.tar) |
|
||||
| DeiT_base_<br>patch16_224 | 0.817 | 0.957 | - | - | 16.85 | 86.42 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_patch16_224_infer.tar) |
|
||||
| DeiT_base_<br>patch16_384 | 0.830 | 0.962 | - | - | 49.35 | 86.42 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_patch16_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_patch16_384_infer.tar) |
|
||||
| DeiT_tiny_<br>distilled_patch16_224 | 0.741 | 0.918 | - | - | 1.08 | 5.87 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_tiny_distilled_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_tiny_distilled_patch16_224_infer.tar) |
|
||||
| DeiT_small_<br>distilled_patch16_224 | 0.809 | 0.953 | - | - | 4.26 | 22.36 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_distilled_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_small_distilled_patch16_224_infer.tar) |
|
||||
| DeiT_base_<br>distilled_patch16_224 | 0.831 | 0.964 | - | - | 16.93 | 87.18 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_distilled_patch16_224_infer.tar) |
|
||||
| DeiT_base_<br>distilled_patch16_384 | 0.851 | 0.973 | - | - | 49.43 | 87.18 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_distilled_patch16_384_infer.tar) |
|
||||
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|
||||
|------------------------|-----------|-----------|------------------|------------------|----------|------------------------|------------------------|------------------------|------------------------|
|
||||
| DeiT_tiny_<br>patch16_224 | 0.718 | 0.910 | 3.61 | 3.94 | 6.10 | 1.07 | 5.68 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_tiny_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_tiny_patch16_224_infer.tar) |
|
||||
| DeiT_small_<br>patch16_224 | 0.796 | 0.949 | 3.61 | 6.24 | 10.49 | 4.24 | 21.97 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_small_patch16_224_infer.tar) |
|
||||
| DeiT_base_<br>patch16_224 | 0.817 | 0.957 | 6.13 | 14.87 | 28.50 | 16.85 | 86.42 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_patch16_224_infer.tar) |
|
||||
| DeiT_base_<br>patch16_384 | 0.830 | 0.962 | 14.12 | 48.80 | 97.60 | 49.35 | 86.42 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_patch16_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_patch16_384_infer.tar) |
|
||||
| DeiT_tiny_<br>distilled_patch16_224 | 0.741 | 0.918 | 3.51 | 4.05 | 6.03 | 1.08 | 5.87 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_tiny_distilled_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_tiny_distilled_patch16_224_infer.tar) |
|
||||
| DeiT_small_<br>distilled_patch16_224 | 0.809 | 0.953 | 3.70 | 6.20 | 10.53 | 4.26 | 22.36 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_small_distilled_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_small_distilled_patch16_224_infer.tar) |
|
||||
| DeiT_base_<br>distilled_patch16_224 | 0.831 | 0.964 | 6.17 | 14.94 | 28.58 | 16.93 | 87.18 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_distilled_patch16_224_infer.tar) |
|
||||
| DeiT_base_<br>distilled_patch16_384 | 0.851 | 0.973 | 14.12 | 48.76 | 97.09 | 49.43 | 87.18 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/DeiT_base_distilled_patch16_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/DeiT_base_distilled_patch16_384_infer.tar) |
|
||||
|
||||
<a name="13"></a>
|
||||
|
||||
@ -360,18 +360,18 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模
|
||||
关于 RepVGG 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[RepVGG 系列模型文档](../models/RepVGG.md)。
|
||||
|
||||
|
||||
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|
||||
|------------------------|-----------|-----------|------------------|------------------|----------|-----------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
|
||||
| RepVGG_A0 | 0.7131 | 0.9016 | | | 1.36 | 8.31 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_A0_infer.tar) |
|
||||
| RepVGG_A1 | 0.7380 | 0.9146 | | | 2.37 | 12.79 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A1_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_A1_infer.tar) |
|
||||
| RepVGG_A2 | 0.7571 | 0.9264 | | | 5.12 | 25.50 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A2_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_A2_infer.tar) |
|
||||
| RepVGG_B0 | 0.7450 | 0.9213 | | | 3.06 | 14.34 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B0_infer.tar) |
|
||||
| RepVGG_B1 | 0.7773 | 0.9385 | | | 11.82 | 51.83 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B1_infer.tar) |
|
||||
| RepVGG_B2 | 0.7813 | 0.9410 | | | 18.38 | 80.32 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B2_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B2_infer.tar) |
|
||||
| RepVGG_B1g2 | 0.7732 | 0.9359 | | | 8.82 | 41.36 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1g2_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B1g2_infer.tar) |
|
||||
| RepVGG_B1g4 | 0.7675 | 0.9335 | | | 7.31 | 36.13 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1g4_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B1g4_infer.tar) |
|
||||
| RepVGG_B2g4 | 0.7881 | 0.9448 | | | 11.34 | 55.78 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B2g4_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B2g4_infer.tar) |
|
||||
| RepVGG_B3g4 | 0.7965 | 0.9485 | | | 16.07 | 75.63 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B3g4_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B3g4_infer.tar) |
|
||||
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|
||||
|------------------------|-----------|-----------|------------------|------------------|----------|-----------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
|
||||
| RepVGG_A0 | 0.7131 | 0.9016 | | | | 1.36 | 8.31 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_A0_infer.tar) |
|
||||
| RepVGG_A1 | 0.7380 | 0.9146 | | | | 2.37 | 12.79 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A1_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_A1_infer.tar) |
|
||||
| RepVGG_A2 | 0.7571 | 0.9264 | | | | 5.12 | 25.50 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_A2_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_A2_infer.tar) |
|
||||
| RepVGG_B0 | 0.7450 | 0.9213 | | | | 3.06 | 14.34 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B0_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B0_infer.tar) |
|
||||
| RepVGG_B1 | 0.7773 | 0.9385 | | | | 11.82 | 51.83 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B1_infer.tar) |
|
||||
| RepVGG_B2 | 0.7813 | 0.9410 | | | | 18.38 | 80.32 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B2_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B2_infer.tar) |
|
||||
| RepVGG_B1g2 | 0.7732 | 0.9359 | | | | 8.82 | 41.36 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1g2_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B1g2_infer.tar) |
|
||||
| RepVGG_B1g4 | 0.7675 | 0.9335 | | | | 7.31 | 36.13 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B1g4_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B1g4_infer.tar) |
|
||||
| RepVGG_B2g4 | 0.7881 | 0.9448 | | | | 11.34 | 55.78 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B2g4_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B2g4_infer.tar) |
|
||||
| RepVGG_B3g4 | 0.7965 | 0.9485 | | | | 16.07 | 75.63 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/RepVGG_B3g4_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/RepVGG_B3g4_infer.tar) |
|
||||
|
||||
<a name="14"></a>
|
||||
|
||||
@ -405,16 +405,16 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模
|
||||
|
||||
关于 SwinTransformer 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[SwinTransformer 系列模型文档](../models/SwinTransformer.md)。
|
||||
|
||||
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|
||||
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ |
|
||||
| SwinTransformer_tiny_patch4_window7_224 | 0.8069 | 0.9534 | | | 4.35 | 28.26 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_tiny_patch4_window7_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_tiny_patch4_window7_224_infer.tar) |
|
||||
| SwinTransformer_small_patch4_window7_224 | 0.8275 | 0.9613 | | | 8.51 | 49.56 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_small_patch4_window7_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_small_patch4_window7_224_infer.tar) |
|
||||
| SwinTransformer_base_patch4_window7_224 | 0.8300 | 0.9626 | | | 15.13 | 87.70 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window7_224_infer.tar) |
|
||||
| SwinTransformer_base_patch4_window12_384 | 0.8439 | 0.9693 | | | 44.45 | 87.70 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window12_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window12_384_infer.tar) |
|
||||
| SwinTransformer_base_patch4_window7_224<sup>[1]</sup> | 0.8487 | 0.9746 | | | 15.13 | 87.70 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_22kto1k_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window7_224_infer.tar) |
|
||||
| SwinTransformer_base_patch4_window12_384<sup>[1]</sup> | 0.8642 | 0.9807 | | | 44.45 | 87.70 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window12_384_22kto1k_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window12_384_infer.tar) |
|
||||
| SwinTransformer_large_patch4_window7_224<sup>[1]</sup> | 0.8596 | 0.9783 | | | 34.02 | 196.43 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window7_224_22kto1k_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_large_patch4_window7_224_infer.tar) |
|
||||
| SwinTransformer_large_patch4_window12_384<sup>[1]</sup> | 0.8719 | 0.9823 | | | 99.97 | 196.43 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window12_384_22kto1k_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_large_patch4_window12_384_infer.tar) |
|
||||
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|
||||
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
|
||||
| SwinTransformer_tiny_patch4_window7_224 | 0.8069 | 0.9534 | 6.59 | 9.68 | 16.32 | 4.35 | 28.26 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_tiny_patch4_window7_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_tiny_patch4_window7_224_infer.tar) |
|
||||
| SwinTransformer_small_patch4_window7_224 | 0.8275 | 0.9613 | 12.54 | 17.07 | 28.08 | 8.51 | 49.56 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_small_patch4_window7_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_small_patch4_window7_224_infer.tar) |
|
||||
| SwinTransformer_base_patch4_window7_224 | 0.8300 | 0.9626 | 13.37 | 23.53 | 39.11 | 15.13 | 87.70 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window7_224_infer.tar) |
|
||||
| SwinTransformer_base_patch4_window12_384 | 0.8439 | 0.9693 | 19.52 | 64.56 | 123.30 | 44.45 | 87.70 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window12_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window12_384_infer.tar) |
|
||||
| SwinTransformer_base_patch4_window7_224<sup>[1]</sup> | 0.8487 | 0.9746 | 13.53 | 23.46 | 39.13 | 15.13 | 87.70 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window7_224_22kto1k_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window7_224_infer.tar) |
|
||||
| SwinTransformer_base_patch4_window12_384<sup>[1]</sup> | 0.8642 | 0.9807 | 19.65 | 64.72 | 123.42 | 44.45 | 87.70 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_base_patch4_window12_384_22kto1k_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_base_patch4_window12_384_infer.tar) |
|
||||
| SwinTransformer_large_patch4_window7_224<sup>[1]</sup> | 0.8596 | 0.9783 | 15.74 | 38.57 | 71.49 | 34.02 | 196.43 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window7_224_22kto1k_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_large_patch4_window7_224_infer.tar) |
|
||||
| SwinTransformer_large_patch4_window12_384<sup>[1]</sup> | 0.8719 | 0.9823 | 32.61 | 116.59 | 223.23 | 99.97 | 196.43 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/SwinTransformer_large_patch4_window12_384_22kto1k_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/SwinTransformer_large_patch4_window12_384_infer.tar) |
|
||||
|
||||
[1]:基于 ImageNet22k 数据集预训练,然后在 ImageNet1k 数据集迁移学习得到。
|
||||
|
||||
@ -424,13 +424,13 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模
|
||||
|
||||
关于 LeViT 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[LeViT 系列模型文档](../models/LeViT.md)。
|
||||
|
||||
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | FLOPs(M) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|
||||
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ |
|
||||
| LeViT_128S | 0.7598 | 0.9269 | | | 281 | 7.42 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_128S_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/eViT_128S_infer.tar) |
|
||||
| LeViT_128 | 0.7810 | 0.9371 | | | 365 | 8.87 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_128_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_128_infer.tar) |
|
||||
| LeViT_192 | 0.7934 | 0.9446 | | | 597 | 10.61 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_192_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_192_infer.tar) |
|
||||
| LeViT_256 | 0.8085 | 0.9497 | | | 1049 | 18.45 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_256_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_256_infer.tar) |
|
||||
| LeViT_384 | 0.8191 | 0.9551 | | | 2234 | 38.45 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_384_infer.tar) |
|
||||
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(M) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|
||||
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
|
||||
| LeViT_128S | 0.7598 | 0.9269 | | | | 281 | 7.42 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_128S_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/eViT_128S_infer.tar) |
|
||||
| LeViT_128 | 0.7810 | 0.9371 | | | | 365 | 8.87 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_128_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_128_infer.tar) |
|
||||
| LeViT_192 | 0.7934 | 0.9446 | | | | 597 | 10.61 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_192_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_192_infer.tar) |
|
||||
| LeViT_256 | 0.8085 | 0.9497 | | | | 1049 | 18.45 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_256_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_256_infer.tar) |
|
||||
| LeViT_384 | 0.8191 | 0.9551 | | | | 2234 | 38.45 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/LeViT_384_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/LeViT_384_infer.tar) |
|
||||
|
||||
**注**:与 Reference 的精度差异源于数据预处理不同及未使用蒸馏的 head 作为输出。
|
||||
|
||||
@ -440,14 +440,14 @@ ViT(Vision Transformer) 与 DeiT(Data-efficient Image Transformers)系列模
|
||||
|
||||
关于 Twins 系列模型的精度、速度指标如下表所示,更多介绍可以参考:[Twins 系列模型文档](../models/Twins.md)。
|
||||
|
||||
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|
||||
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ |
|
||||
| pcpvt_small | 0.8082 | 0.9552 | | |3.67 | 24.06 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_small_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/pcpvt_small_infer.tar) |
|
||||
| pcpvt_base | 0.8242 | 0.9619 | | | 6.44 | 43.83 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_base_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/pcpvt_base_infer.tar) |
|
||||
| pcpvt_large | 0.8273 | 0.9650 | | | 9.50 | 60.99 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_large_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/pcpvt_large_infer.tar) |
|
||||
| alt_gvt_small | 0.8140 | 0.9546 | | |2.81 | 24.06 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_small_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/alt_gvt_small_infer.tar) |
|
||||
| alt_gvt_base | 0.8294 | 0.9621 | | | 8.34 | 56.07 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_base_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/alt_gvt_base_infer.tar) |
|
||||
| alt_gvt_large | 0.8331 | 0.9642 | | | 14.81 | 99.27 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_large_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/alt_gvt_large_infer.tar) |
|
||||
| 模型 | Top-1 Acc | Top-5 Acc | time(ms)<br>bs=1 | time(ms)<br>bs=4 | time(ms)<br/>bs=8 | FLOPs(G) | Params(M) | 预训练模型下载地址 | inference模型下载地址 |
|
||||
| ---------- | --------- | --------- | ---------------- | ---------------- | -------- | --------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
|
||||
| pcpvt_small | 0.8082 | 0.9552 | 7.32 | 10.51 | 15.27 |3.67 | 24.06 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_small_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/pcpvt_small_infer.tar) |
|
||||
| pcpvt_base | 0.8242 | 0.9619 | 12.20 | 16.22 | 23.16 | 6.44 | 43.83 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_base_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/pcpvt_base_infer.tar) |
|
||||
| pcpvt_large | 0.8273 | 0.9650 | 16.47 | 22.90 | 32.73 | 9.50 | 60.99 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/pcpvt_large_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/pcpvt_large_infer.tar) |
|
||||
| alt_gvt_small | 0.8140 | 0.9546 | 6.94 | 9.01 | 12.27 |2.81 | 24.06 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_small_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/alt_gvt_small_infer.tar) |
|
||||
| alt_gvt_base | 0.8294 | 0.9621 | 9.37 | 15.02 | 24.54 | 8.34 | 56.07 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_base_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/alt_gvt_base_infer.tar) |
|
||||
| alt_gvt_large | 0.8331 | 0.9642 | 11.76 | 22.08 | 35.12 | 14.81 | 99.27 | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/alt_gvt_large_pretrained.pdparams) | [下载链接](https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/alt_gvt_large_infer.tar) |
|
||||
|
||||
**注**:与 Reference 的精度差异源于数据预处理不同。
|
||||
|
||||
|
@ -4,6 +4,7 @@
|
||||
|
||||
* [1. 概述](#1)
|
||||
* [2. 精度、FLOPS 和参数量](#2)
|
||||
* [3. 基于V100 GPU 的预测速度](#3)
|
||||
|
||||
<a name='1'></a>
|
||||
|
||||
@ -28,3 +29,20 @@ Swin Transformer 是一种新的视觉 Transformer 网络,可以用作计算
|
||||
[1]:基于 ImageNet22k 数据集预训练,然后在 ImageNet1k 数据集迁移学习得到。
|
||||
|
||||
**注**:与 Reference 的精度差异源于数据预处理不同。
|
||||
|
||||
<a name='3'></a>
|
||||
|
||||
## 3. 基于 V100 GPU 的预测速度
|
||||
|
||||
| Models | Crop Size | Resize Short Size | FP32<br/>Batch Size=1<br/>(ms) | FP32<br/>Batch Size=4<br/>(ms) | FP32<br/>Batch Size=8<br/>(ms) |
|
||||
| ------------------------------------------------------- | --------- | ----------------- | ------------------------------ | ------------------------------ | ------------------------------ |
|
||||
| SwinTransformer_tiny_patch4_window7_224 | 224 | 256 | 6.59 | 9.68 | 16.32 |
|
||||
| SwinTransformer_small_patch4_window7_224 | 224 | 256 | 12.54 | 17.07 | 28.08 |
|
||||
| SwinTransformer_base_patch4_window7_224 | 224 | 256 | 13.37 | 23.53 | 39.11 |
|
||||
| SwinTransformer_base_patch4_window12_384 | 384 | 384 | 19.52 | 64.56 | 123.30 |
|
||||
| SwinTransformer_base_patch4_window7_224<sup>[1]</sup> | 224 | 256 | 13.53 | 23.46 | 39.13 |
|
||||
| SwinTransformer_base_patch4_window12_384<sup>[1]</sup> | 384 | 384 | 19.65 | 64.72 | 123.42 |
|
||||
| SwinTransformer_large_patch4_window7_224<sup>[1]</sup> | 224 | 256 | 15.74 | 38.57 | 71.49 |
|
||||
| SwinTransformer_large_patch4_window12_384<sup>[1]</sup> | 384 | 384 | 32.61 | 116.59 | 223.23 |
|
||||
|
||||
[1]:基于 ImageNet22k 数据集预训练,然后在 ImageNet1k 数据集迁移学习得到。
|
||||
|
@ -4,6 +4,7 @@
|
||||
|
||||
* [1. 概述](#1)
|
||||
* [2. 精度、FLOPS 和参数量](#2)
|
||||
* [3. 基于V100 GPU 的预测速度](#3)
|
||||
|
||||
<a name='1'></a>
|
||||
|
||||
@ -24,3 +25,16 @@ Twins 网络包括 Twins-PCPVT 和 Twins-SVT,其重点对空间注意力机制
|
||||
| alt_gvt_large | 0.8331 | 0.9642 | 0.837 | - | 14.8 | 99.2 |
|
||||
|
||||
**注**:与 Reference 的精度差异源于数据预处理不同。
|
||||
|
||||
<a name='3'></a>
|
||||
|
||||
## 3. 基于 V100 GPU 的预测速度
|
||||
|
||||
| Models | Crop Size | Resize Short Size | FP32<br/>Batch Size=1<br/>(ms) | FP32<br/>Batch Size=4<br/>(ms) | FP32<br/>Batch Size=8<br/>(ms) |
|
||||
| ------------- | --------- | ----------------- | ------------------------------ | ------------------------------ | ------------------------------ |
|
||||
| pcpvt_small | 224 | 256 | 7.32 | 10.51 | 15.27 |
|
||||
| pcpvt_base | 224 | 256 | 12.20 | 16.22 | 23.16 |
|
||||
| pcpvt_large | 224 | 256 | 16.47 | 22.90 | 32.73 |
|
||||
| alt_gvt_small | 224 | 256 | 6.94 | 9.01 | 12.27 |
|
||||
| alt_gvt_base | 224 | 256 | 9.37 | 15.02 | 24.54 |
|
||||
| alt_gvt_large | 224 | 256 | 11.76 | 22.08 | 35.12 |
|
||||
|
@ -4,6 +4,7 @@
|
||||
|
||||
* [1. 概述](#1)
|
||||
* [2. 精度、FLOPS 和参数量](#2)
|
||||
* [3. 基于V100 GPU 的预测速度](#3)
|
||||
|
||||
<a name='1'></a>
|
||||
|
||||
@ -41,3 +42,29 @@ DeiT(Data-efficient Image Transformers)系列模型是由 FaceBook 在 2020
|
||||
| DeiT_base_distilled_patch16_384 | 0.851 | 0.973 | 0.852 | 0.972 | | |
|
||||
|
||||
关于 Params、FLOPs、Inference speed 等信息,敬请期待。
|
||||
|
||||
<a name='3'></a>
|
||||
|
||||
## 3. 基于 V100 GPU 的预测速度
|
||||
|
||||
| Models | Crop Size | Resize Short Size | FP32<br/>Batch Size=1<br/>(ms) | FP32<br/>Batch Size=4<br/>(ms) | FP32<br/>Batch Size=8<br/>(ms) |
|
||||
| -------------------------- | --------- | ----------------- | ------------------------------ | ------------------------------ | ------------------------------ |
|
||||
| ViT_small_<br/>patch16_224 | 256 | 224 | 3.71 | 9.05 | 16.72 |
|
||||
| ViT_base_<br/>patch16_224 | 256 | 224 | 6.12 | 14.84 | 28.51 |
|
||||
| ViT_base_<br/>patch16_384 | 384 | 384 | 14.15 | 48.38 | 95.06 |
|
||||
| ViT_base_<br/>patch32_384 | 384 | 384 | 4.94 | 13.43 | 24.08 |
|
||||
| ViT_large_<br/>patch16_224 | 256 | 224 | 15.53 | 49.50 | 94.09 |
|
||||
| ViT_large_<br/>patch16_384 | 384 | 384 | 39.51 | 152.46 | 304.06 |
|
||||
| ViT_large_<br/>patch32_384 | 384 | 384 | 11.44 | 36.09 | 70.63 |
|
||||
|
||||
| Models | Crop Size | Resize Short Size | FP32<br/>Batch Size=1<br/>(ms) | FP32<br/>Batch Size=4<br/>(ms) | FP32<br/>Batch Size=8<br/>(ms) |
|
||||
| ------------------------------------ | --------- | ----------------- | ------------------------------ | ------------------------------ | ------------------------------ |
|
||||
| DeiT_tiny_<br>patch16_224 | 256 | 224 | 3.61 | 3.94 | 6.10 |
|
||||
| DeiT_small_<br>patch16_224 | 256 | 224 | 3.61 | 6.24 | 10.49 |
|
||||
| DeiT_base_<br>patch16_224 | 256 | 224 | 6.13 | 14.87 | 28.50 |
|
||||
| DeiT_base_<br>patch16_384 | 384 | 384 | 14.12 | 48.80 | 97.60 |
|
||||
| DeiT_tiny_<br>distilled_patch16_224 | 256 | 224 | 3.51 | 4.05 | 6.03 |
|
||||
| DeiT_small_<br>distilled_patch16_224 | 256 | 224 | 3.70 | 6.20 | 10.53 |
|
||||
| DeiT_base_<br>distilled_patch16_224 | 256 | 224 | 6.17 | 14.94 | 28.58 |
|
||||
| DeiT_base_<br>distilled_patch16_384 | 384 | 384 | 14.12 | 48.76 | 97.09 |
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user