support specify model_type in config
such as norm_train and to_static_trainpull/2648/head
parent
811b483e30
commit
2d66aeeb77
|
@ -90,6 +90,8 @@ line_num=`expr $line_num + 1`
|
|||
fp_items=$(func_parser_value "${lines[line_num]}")
|
||||
line_num=`expr $line_num + 1`
|
||||
epoch=$(func_parser_value "${lines[line_num]}")
|
||||
line_num=`expr $line_num + 1`
|
||||
model_type=$(func_parser_value "${lines[line_num]}")
|
||||
|
||||
line_num=`expr $line_num + 1`
|
||||
profile_option_key=$(func_parser_key "${lines[line_num]}")
|
||||
|
@ -118,6 +120,7 @@ line_gpuid=4
|
|||
line_precision=6
|
||||
line_epoch=7
|
||||
line_batchsize=9
|
||||
line_model_type=15
|
||||
line_profile=13
|
||||
line_eval_py=24
|
||||
line_export_py=30
|
||||
|
@ -138,6 +141,7 @@ if [[ ! -n "$PARAMS" ]];then
|
|||
batch_size_list=(${batch_size})
|
||||
fp_items_list=(${fp_items})
|
||||
device_num_list=(N1C4)
|
||||
model_type_list=(${model_type})
|
||||
run_mode="DP"
|
||||
elif [[ ${PARAMS} = "dynamicTostatic" ]];then
|
||||
IFS="|"
|
||||
|
@ -165,14 +169,13 @@ else
|
|||
fp_items_list=($precision)
|
||||
batch_size_list=($batch_size)
|
||||
device_num_list=($device_num)
|
||||
fi
|
||||
|
||||
# for log name
|
||||
to_static=""
|
||||
# parse "to_static" options and modify trainer into "to_static_trainer"
|
||||
if [[ ${model_type} = "dynamicTostatic" ]];then
|
||||
to_static="d2sT_"
|
||||
sed -i 's/trainer:norm_train/trainer:to_static_train/g' $FILENAME
|
||||
# parse "to_static" options and modify trainer into "to_static_trainer"
|
||||
if [[ ${model_type} = "dynamicTostatic" ]];then
|
||||
model_type_list="to_static_train"
|
||||
else
|
||||
model_type_list="norm_train"
|
||||
fi
|
||||
fi
|
||||
|
||||
|
||||
|
@ -180,131 +183,142 @@ IFS="|"
|
|||
for batch_size in ${batch_size_list[*]}; do
|
||||
for precision in ${fp_items_list[*]}; do
|
||||
for device_num in ${device_num_list[*]}; do
|
||||
# sed batchsize and precision
|
||||
func_sed_params "$FILENAME" "${line_precision}" "$precision"
|
||||
func_sed_params "$FILENAME" "${line_batchsize}" "$batch_size"
|
||||
func_sed_params "$FILENAME" "${line_epoch}" "$epoch"
|
||||
gpu_id=$(set_gpu_id $device_num)
|
||||
for model_type in ${model_type_list[*]}; do
|
||||
# sed batchsize and precision
|
||||
func_sed_params "$FILENAME" "${line_precision}" "$precision"
|
||||
func_sed_params "$FILENAME" "${line_batchsize}" "$batch_size"
|
||||
func_sed_params "$FILENAME" "${line_epoch}" "$epoch"
|
||||
func_sed_params "$FILENAME" "${line_model_type}" "$model_type"
|
||||
|
||||
# It is needed that using dali, NHWC and 4 channels when training ResNet50 with AMPO2
|
||||
if [[ $model_name == "ResNet50" && $precision == "fp16" ]]; then
|
||||
sed -i "s/ResNet50.yaml/ResNet50_amp_O2_ultra.yaml/g" $FILENAME
|
||||
fi
|
||||
|
||||
# if bs is big, then copy train_list.txt to generate more train log
|
||||
# At least 25 log number would be good to calculate ips for benchmark system.
|
||||
# So the copy number for train_list is as follows:
|
||||
total_batch_size=`echo $[$batch_size*${device_num:1:1}*${device_num:3:3}]`
|
||||
if [[ $model_name == *GeneralRecognition* ]]; then
|
||||
cd dataset/
|
||||
train_list_length=`cat train_reg_all_data.txt | wc -l`
|
||||
copy_num=`echo $[25*10*$total_batch_size/$train_list_length]`
|
||||
if [[ $copy_num -gt 1 ]];then
|
||||
rm -rf train_reg_all_data.txt
|
||||
for ((i=1; i <=$copy_num; i++));do
|
||||
cat tipc_shitu_demo_data/demo_train.txt >> train_reg_all_data.txt
|
||||
done
|
||||
fi
|
||||
cd ..
|
||||
else
|
||||
cd dataset/ILSVRC2012
|
||||
val_list_length=`cat val_list.txt | wc -l`
|
||||
copy_num=`echo $[25*10*$total_batch_size/$val_list_length]`
|
||||
rm -rf train_list.txt
|
||||
if [[ $copy_num -gt 1 ]];then
|
||||
for ((i=1; i <=$copy_num; i++));do
|
||||
cat val_list.txt >> train_list.txt
|
||||
done
|
||||
# for log name
|
||||
if [[ ${model_type} = "to_static_train" ]];then
|
||||
to_static="d2sT_"
|
||||
else
|
||||
ln -s val_list.txt train_list.txt
|
||||
to_static=""
|
||||
fi
|
||||
cd ../../
|
||||
fi
|
||||
|
||||
if [[ ${#gpu_id} -le 1 ]];then
|
||||
log_path="$SAVE_LOG/profiling_log"
|
||||
mkdir -p $log_path
|
||||
log_name="${repo_name}_${model_name}_bs${batch_size}_${precision}_${run_mode}_${device_num}_${to_static}profiling"
|
||||
func_sed_params "$FILENAME" "${line_gpuid}" "0" # sed used gpu_id
|
||||
# set profile_option params
|
||||
tmp=`sed -i "${line_profile}s/.*/${profile_option}/" "${FILENAME}"`
|
||||
gpu_id=$(set_gpu_id $device_num)
|
||||
|
||||
# run test_train_inference_python.sh
|
||||
cmd="bash test_tipc/test_train_inference_python.sh ${FILENAME} benchmark_train > ${log_path}/${log_name} 2>&1 "
|
||||
echo $cmd
|
||||
eval $cmd
|
||||
eval "cat ${log_path}/${log_name}"
|
||||
# It is needed that using dali, NHWC and 4 channels when training ResNet50 with AMPO2
|
||||
if [[ $model_name == "ResNet50" && $precision == "fp16" ]]; then
|
||||
sed -i "s/ResNet50.yaml/ResNet50_amp_O2_ultra.yaml/g" $FILENAME
|
||||
fi
|
||||
|
||||
# without profile
|
||||
log_path="$SAVE_LOG/train_log"
|
||||
speed_log_path="$SAVE_LOG/index"
|
||||
mkdir -p $log_path
|
||||
mkdir -p $speed_log_path
|
||||
log_name="${repo_name}_${model_name}_bs${batch_size}_${precision}_${run_mode}_${device_num}_${to_static}log"
|
||||
speed_log_name="${repo_name}_${model_name}_bs${batch_size}_${precision}_${run_mode}_${device_num}_${to_static}speed"
|
||||
func_sed_params "$FILENAME" "${line_profile}" "null" # sed profile_id as null
|
||||
cmd="bash test_tipc/test_train_inference_python.sh ${FILENAME} benchmark_train > ${log_path}/${log_name} 2>&1 "
|
||||
echo $cmd
|
||||
job_bt=`date '+%Y%m%d%H%M%S'`
|
||||
eval $cmd
|
||||
job_et=`date '+%Y%m%d%H%M%S'`
|
||||
export model_run_time=$((${job_et}-${job_bt}))
|
||||
eval "cat ${log_path}/${log_name}"
|
||||
# if bs is big, then copy train_list.txt to generate more train log
|
||||
# At least 25 log number would be good to calculate ips for benchmark system.
|
||||
# So the copy number for train_list is as follows:
|
||||
total_batch_size=`echo $[$batch_size*${device_num:1:1}*${device_num:3:3}]`
|
||||
if [[ $model_name == *GeneralRecognition* ]]; then
|
||||
cd dataset/
|
||||
train_list_length=`cat train_reg_all_data.txt | wc -l`
|
||||
copy_num=`echo $[25*10*$total_batch_size/$train_list_length]`
|
||||
if [[ $copy_num -gt 1 ]];then
|
||||
rm -rf train_reg_all_data.txt
|
||||
for ((i=1; i <=$copy_num; i++));do
|
||||
cat tipc_shitu_demo_data/demo_train.txt >> train_reg_all_data.txt
|
||||
done
|
||||
fi
|
||||
cd ..
|
||||
else
|
||||
cd dataset/ILSVRC2012
|
||||
val_list_length=`cat val_list.txt | wc -l`
|
||||
copy_num=`echo $[25*10*$total_batch_size/$val_list_length]`
|
||||
rm -rf train_list.txt
|
||||
if [[ $copy_num -gt 1 ]];then
|
||||
for ((i=1; i <=$copy_num; i++));do
|
||||
cat val_list.txt >> train_list.txt
|
||||
done
|
||||
else
|
||||
ln -s val_list.txt train_list.txt
|
||||
fi
|
||||
cd ../../
|
||||
fi
|
||||
|
||||
# parser log
|
||||
_model_name="${model_name}_bs${batch_size}_${precision}_${run_mode}"
|
||||
cmd="${python} ${BENCHMARK_ROOT}/scripts/analysis.py --filename ${log_path}/${log_name} \
|
||||
--speed_log_file '${speed_log_path}/${speed_log_name}' \
|
||||
--model_name ${_model_name} \
|
||||
--base_batch_size ${batch_size} \
|
||||
--run_mode ${run_mode} \
|
||||
--fp_item ${precision} \
|
||||
--keyword ips: \
|
||||
--skip_steps 100 \
|
||||
--device_num ${device_num} \
|
||||
--speed_unit samples/s \
|
||||
--convergence_key loss: "
|
||||
echo $cmd
|
||||
eval $cmd
|
||||
last_status=${PIPESTATUS[0]}
|
||||
status_check $last_status "${cmd}" "${status_log}" "${model_name}"
|
||||
else
|
||||
IFS=";"
|
||||
unset_env=`unset CUDA_VISIBLE_DEVICES`
|
||||
log_path="$SAVE_LOG/train_log"
|
||||
speed_log_path="$SAVE_LOG/index"
|
||||
mkdir -p $log_path
|
||||
mkdir -p $speed_log_path
|
||||
log_name="${repo_name}_${model_name}_bs${batch_size}_${precision}_${run_mode}_${device_num}_${to_static}log"
|
||||
speed_log_name="${repo_name}_${model_name}_bs${batch_size}_${precision}_${run_mode}_${device_num}_${to_static}speed"
|
||||
func_sed_params "$FILENAME" "${line_gpuid}" "$gpu_id" # sed used gpu_id
|
||||
func_sed_params "$FILENAME" "${line_profile}" "null" # sed --profile_option as null
|
||||
cmd="bash test_tipc/test_train_inference_python.sh ${FILENAME} benchmark_train > ${log_path}/${log_name} 2>&1 "
|
||||
echo $cmd
|
||||
job_bt=`date '+%Y%m%d%H%M%S'`
|
||||
eval $cmd
|
||||
job_et=`date '+%Y%m%d%H%M%S'`
|
||||
export model_run_time=$((${job_et}-${job_bt}))
|
||||
eval "cat ${log_path}/${log_name}"
|
||||
# parser log
|
||||
_model_name="${model_name}_bs${batch_size}_${precision}_${run_mode}"
|
||||
if [[ ${#gpu_id} -le 1 ]];then
|
||||
log_path="$SAVE_LOG/profiling_log"
|
||||
mkdir -p $log_path
|
||||
log_name="${repo_name}_${model_name}_bs${batch_size}_${precision}_${run_mode}_${device_num}_${to_static}profiling"
|
||||
func_sed_params "$FILENAME" "${line_gpuid}" "0" # sed used gpu_id
|
||||
# set profile_option params
|
||||
tmp=`sed -i "${line_profile}s/.*/${profile_option}/" "${FILENAME}"`
|
||||
|
||||
cmd="${python} ${BENCHMARK_ROOT}/scripts/analysis.py --filename ${log_path}/${log_name} \
|
||||
--speed_log_file '${speed_log_path}/${speed_log_name}' \
|
||||
--model_name ${_model_name} \
|
||||
--base_batch_size ${batch_size} \
|
||||
--run_mode ${run_mode} \
|
||||
--fp_item ${precision} \
|
||||
--keyword ips: \
|
||||
--skip_steps 100 \
|
||||
--device_num ${device_num} \
|
||||
--speed_unit images/s \
|
||||
--convergence_key loss: "
|
||||
echo $cmd
|
||||
eval $cmd
|
||||
last_status=${PIPESTATUS[0]}
|
||||
status_check $last_status "${cmd}" "${status_log}" "${model_name}"
|
||||
fi
|
||||
# run test_train_inference_python.sh
|
||||
cmd="bash test_tipc/test_train_inference_python.sh ${FILENAME} benchmark_train > ${log_path}/${log_name} 2>&1 "
|
||||
echo $cmd
|
||||
eval $cmd
|
||||
eval "cat ${log_path}/${log_name}"
|
||||
|
||||
# without profile
|
||||
log_path="$SAVE_LOG/train_log"
|
||||
speed_log_path="$SAVE_LOG/index"
|
||||
mkdir -p $log_path
|
||||
mkdir -p $speed_log_path
|
||||
log_name="${repo_name}_${model_name}_bs${batch_size}_${precision}_${run_mode}_${device_num}_${to_static}log"
|
||||
speed_log_name="${repo_name}_${model_name}_bs${batch_size}_${precision}_${run_mode}_${device_num}_${to_static}speed"
|
||||
func_sed_params "$FILENAME" "${line_profile}" "null" # sed profile_id as null
|
||||
cmd="bash test_tipc/test_train_inference_python.sh ${FILENAME} benchmark_train > ${log_path}/${log_name} 2>&1 "
|
||||
echo $cmd
|
||||
job_bt=`date '+%Y%m%d%H%M%S'`
|
||||
eval $cmd
|
||||
job_et=`date '+%Y%m%d%H%M%S'`
|
||||
export model_run_time=$((${job_et}-${job_bt}))
|
||||
eval "cat ${log_path}/${log_name}"
|
||||
|
||||
# parser log
|
||||
_model_name="${model_name}_bs${batch_size}_${precision}_${run_mode}"
|
||||
cmd="${python} ${BENCHMARK_ROOT}/scripts/analysis.py --filename ${log_path}/${log_name} \
|
||||
--speed_log_file '${speed_log_path}/${speed_log_name}' \
|
||||
--model_name ${_model_name} \
|
||||
--base_batch_size ${batch_size} \
|
||||
--run_mode ${run_mode} \
|
||||
--fp_item ${precision} \
|
||||
--keyword ips: \
|
||||
--skip_steps 100 \
|
||||
--device_num ${device_num} \
|
||||
--speed_unit samples/s \
|
||||
--convergence_key loss: "
|
||||
echo $cmd
|
||||
eval $cmd
|
||||
last_status=${PIPESTATUS[0]}
|
||||
status_check $last_status "${cmd}" "${status_log}" "${model_name}"
|
||||
else
|
||||
IFS=";"
|
||||
unset_env=`unset CUDA_VISIBLE_DEVICES`
|
||||
log_path="$SAVE_LOG/train_log"
|
||||
speed_log_path="$SAVE_LOG/index"
|
||||
mkdir -p $log_path
|
||||
mkdir -p $speed_log_path
|
||||
log_name="${repo_name}_${model_name}_bs${batch_size}_${precision}_${run_mode}_${device_num}_${to_static}log"
|
||||
speed_log_name="${repo_name}_${model_name}_bs${batch_size}_${precision}_${run_mode}_${device_num}_${to_static}speed"
|
||||
func_sed_params "$FILENAME" "${line_gpuid}" "$gpu_id" # sed used gpu_id
|
||||
func_sed_params "$FILENAME" "${line_profile}" "null" # sed --profile_option as null
|
||||
cmd="bash test_tipc/test_train_inference_python.sh ${FILENAME} benchmark_train > ${log_path}/${log_name} 2>&1 "
|
||||
echo $cmd
|
||||
job_bt=`date '+%Y%m%d%H%M%S'`
|
||||
eval $cmd
|
||||
job_et=`date '+%Y%m%d%H%M%S'`
|
||||
export model_run_time=$((${job_et}-${job_bt}))
|
||||
eval "cat ${log_path}/${log_name}"
|
||||
# parser log
|
||||
_model_name="${model_name}_bs${batch_size}_${precision}_${run_mode}"
|
||||
|
||||
cmd="${python} ${BENCHMARK_ROOT}/scripts/analysis.py --filename ${log_path}/${log_name} \
|
||||
--speed_log_file '${speed_log_path}/${speed_log_name}' \
|
||||
--model_name ${_model_name} \
|
||||
--base_batch_size ${batch_size} \
|
||||
--run_mode ${run_mode} \
|
||||
--fp_item ${precision} \
|
||||
--keyword ips: \
|
||||
--skip_steps 100 \
|
||||
--device_num ${device_num} \
|
||||
--speed_unit images/s \
|
||||
--convergence_key loss: "
|
||||
echo $cmd
|
||||
eval $cmd
|
||||
last_status=${PIPESTATUS[0]}
|
||||
status_check $last_status "${cmd}" "${status_log}" "${model_name}"
|
||||
fi
|
||||
done
|
||||
done
|
||||
done
|
||||
done
|
||||
|
|
|
@ -54,6 +54,7 @@ null:null
|
|||
batch_size:128
|
||||
fp_items:fp32
|
||||
epoch:1
|
||||
model_type:norm_train
|
||||
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
|
||||
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
|
||||
===========================infer_benchmark_params==========================
|
||||
|
|
|
@ -50,5 +50,12 @@ inference:python/predict_cls.py -c configs/inference_cls.yaml
|
|||
-o Global.benchmark:False
|
||||
null:null
|
||||
null:null
|
||||
===========================train_benchmark_params==========================
|
||||
batch_size:64
|
||||
fp_items:fp32|fp16
|
||||
epoch:1
|
||||
model_type:norm_train|to_static_train
|
||||
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
|
||||
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
|
||||
===========================infer_benchmark_params==========================
|
||||
random_infer_input:[{float32,[3,224,224]}]
|
|
@ -54,7 +54,8 @@ null:null
|
|||
batch_size:256
|
||||
fp_items:fp32|fp16
|
||||
epoch:1
|
||||
model_type:norm_train
|
||||
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
|
||||
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
|
||||
===========================infer_benchmark_params==========================
|
||||
random_infer_input:[{float32,[3,224,224]}]
|
||||
random_infer_input:[{float32,[3,224,224]}]
|
||||
|
|
|
@ -54,7 +54,8 @@ null:null
|
|||
batch_size:128
|
||||
fp_items:fp32|fp16
|
||||
epoch:1
|
||||
model_type:norm_train
|
||||
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
|
||||
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
|
||||
===========================infer_benchmark_params==========================
|
||||
random_infer_input:[{float32,[3,224,224]}]
|
||||
random_infer_input:[{float32,[3,224,224]}]
|
||||
|
|
|
@ -20,7 +20,7 @@ distill_train:null
|
|||
null:null
|
||||
null:null
|
||||
##
|
||||
===========================eval_params===========================
|
||||
===========================eval_params===========================
|
||||
eval:tools/eval.py -c ppcls/configs/ImageNet/HRNet/HRNet_W18_C.yaml
|
||||
null:null
|
||||
##
|
||||
|
@ -54,7 +54,8 @@ null:null
|
|||
batch_size:64
|
||||
fp_items:fp32|fp16
|
||||
epoch:1
|
||||
model_type:norm_train
|
||||
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
|
||||
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
|
||||
===========================infer_benchmark_params==========================
|
||||
random_infer_input:[{float32,[3,224,224]}]
|
||||
random_infer_input:[{float32,[3,224,224]}]
|
||||
|
|
|
@ -20,7 +20,7 @@ distill_train:null
|
|||
to_static_train:-o Global.to_static=True
|
||||
null:null
|
||||
##
|
||||
===========================eval_params===========================
|
||||
===========================eval_params===========================
|
||||
eval:tools/eval.py -c ppcls/configs/ImageNet/HRNet/HRNet_W48_C.yaml
|
||||
null:null
|
||||
##
|
||||
|
@ -54,7 +54,8 @@ null:null
|
|||
batch_size:64|128
|
||||
fp_items:fp32
|
||||
epoch:1
|
||||
model_type:norm_train
|
||||
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
|
||||
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
|
||||
===========================infer_benchmark_params==========================
|
||||
random_infer_input:[{float32,[3,224,224]}]
|
||||
random_infer_input:[{float32,[3,224,224]}]
|
||||
|
|
|
@ -20,7 +20,7 @@ distill_train:null
|
|||
to_static_train:-o Global.to_static=True
|
||||
null:null
|
||||
##
|
||||
===========================eval_params===========================
|
||||
===========================eval_params===========================
|
||||
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileNetV1/MobileNetV1.yaml
|
||||
null:null
|
||||
##
|
||||
|
@ -54,7 +54,8 @@ null:null
|
|||
batch_size:64|128
|
||||
fp_items:fp32|fp16
|
||||
epoch:1
|
||||
model_type:norm_train
|
||||
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
|
||||
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
|
||||
===========================infer_benchmark_params==========================
|
||||
random_infer_input:[{float32,[3,224,224]}]
|
||||
random_infer_input:[{float32,[3,224,224]}]
|
||||
|
|
|
@ -20,7 +20,7 @@ distill_train:null
|
|||
to_static_train:-o Global.to_static=True
|
||||
null:null
|
||||
##
|
||||
===========================eval_params===========================
|
||||
===========================eval_params===========================
|
||||
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileNetV2/MobileNetV2.yaml
|
||||
null:null
|
||||
##
|
||||
|
@ -54,7 +54,8 @@ null:null
|
|||
batch_size:64|128
|
||||
fp_items:fp32|fp16
|
||||
epoch:1
|
||||
model_type:norm_train
|
||||
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
|
||||
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
|
||||
===========================infer_benchmark_params==========================
|
||||
random_infer_input:[{float32,[3,224,224]}]
|
||||
random_infer_input:[{float32,[3,224,224]}]
|
||||
|
|
|
@ -54,7 +54,8 @@ null:null
|
|||
batch_size:256|640
|
||||
fp_items:fp32|fp16
|
||||
epoch:1
|
||||
model_type:norm_train|to_static_train
|
||||
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
|
||||
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
|
||||
===========================infer_benchmark_params==========================
|
||||
random_infer_input:[{float32,[3,224,224]}]
|
||||
random_infer_input:[{float32,[3,224,224]}]
|
||||
|
|
|
@ -54,7 +54,8 @@ null:null
|
|||
batch_size:256|640
|
||||
fp_items:fp32
|
||||
epoch:1
|
||||
model_type:norm_train
|
||||
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
|
||||
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
|
||||
===========================infer_benchmark_params==========================
|
||||
random_infer_input:[{float32,[3,224,224]}]
|
||||
random_infer_input:[{float32,[3,224,224]}]
|
||||
|
|
|
@ -20,7 +20,7 @@ distill_train:null
|
|||
to_static_train:-o Global.to_static=True
|
||||
null:null
|
||||
##
|
||||
===========================eval_params===========================
|
||||
===========================eval_params===========================
|
||||
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x1_0.yaml -o Slim.quant.name=pact
|
||||
null:null
|
||||
##
|
||||
|
@ -54,7 +54,8 @@ null:null
|
|||
batch_size:256|640
|
||||
fp_items:fp32
|
||||
epoch:1
|
||||
model_type:norm_train
|
||||
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
|
||||
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
|
||||
===========================infer_benchmark_params==========================
|
||||
random_infer_input:[{float32,[3,224,224]}]
|
||||
random_infer_input:[{float32,[3,224,224]}]
|
||||
|
|
|
@ -20,7 +20,7 @@ distill_train:null
|
|||
to_static_train:-o Global.to_static=True
|
||||
null:null
|
||||
##
|
||||
===========================eval_params===========================
|
||||
===========================eval_params===========================
|
||||
eval:tools/eval.py -c ppcls/configs/ImageNet/MobileNetV3/MobileNetV3_large_x1_0.yaml
|
||||
null:null
|
||||
##
|
||||
|
@ -54,7 +54,8 @@ null:null
|
|||
batch_size:256|640
|
||||
fp_items:fp32
|
||||
epoch:1
|
||||
model_type:norm_train
|
||||
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
|
||||
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
|
||||
===========================infer_benchmark_params==========================
|
||||
random_infer_input:[{float32,[3,224,224]}]
|
||||
random_infer_input:[{float32,[3,224,224]}]
|
||||
|
|
|
@ -54,6 +54,7 @@ null:null
|
|||
batch_size:128
|
||||
fp_items:fp32
|
||||
epoch:1
|
||||
model_type:norm_train
|
||||
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
|
||||
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
|
||||
===========================infer_benchmark_params==========================
|
||||
|
|
|
@ -20,7 +20,7 @@ distill_train:null
|
|||
null:null
|
||||
null:null
|
||||
##
|
||||
===========================eval_params===========================
|
||||
===========================eval_params===========================
|
||||
eval:tools/eval.py -c ppcls/configs/ImageNet/PPHGNet/PPHGNet_small.yaml
|
||||
null:null
|
||||
##
|
||||
|
@ -53,6 +53,7 @@ null:null
|
|||
batch_size:128
|
||||
fp_items:fp32|fp16
|
||||
epoch:1
|
||||
model_type:norm_train
|
||||
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
|
||||
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
|
||||
===========================infer_benchmark_params==========================
|
||||
|
|
|
@ -20,7 +20,7 @@ distill_train:null
|
|||
null:null
|
||||
null:null
|
||||
##
|
||||
===========================eval_params===========================
|
||||
===========================eval_params===========================
|
||||
eval:tools/eval.py -c ppcls/configs/ImageNet/PPHGNet/PPHGNet_tiny.yaml
|
||||
null:null
|
||||
##
|
||||
|
@ -53,6 +53,7 @@ null:null
|
|||
batch_size:128
|
||||
fp_items:fp32|fp16
|
||||
epoch:1
|
||||
model_type:norm_train
|
||||
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
|
||||
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
|
||||
===========================infer_benchmark_params==========================
|
||||
|
|
|
@ -53,6 +53,7 @@ null:null
|
|||
batch_size:512
|
||||
fp_items:fp32|fp16
|
||||
epoch:1
|
||||
model_type:norm_train
|
||||
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
|
||||
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
|
||||
===========================infer_benchmark_params==========================
|
||||
|
|
|
@ -53,6 +53,7 @@ null:null
|
|||
batch_size:512
|
||||
fp_items:fp32|fp16
|
||||
epoch:1
|
||||
model_type:norm_train
|
||||
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
|
||||
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
|
||||
===========================infer_benchmark_params==========================
|
||||
|
|
|
@ -53,6 +53,7 @@ null:null
|
|||
batch_size:512
|
||||
fp_items:fp32|fp16
|
||||
epoch:1
|
||||
model_type:norm_train
|
||||
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
|
||||
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
|
||||
===========================infer_benchmark_params==========================
|
||||
|
|
|
@ -53,6 +53,7 @@ null:null
|
|||
batch_size:512
|
||||
fp_items:fp32|fp16
|
||||
epoch:1
|
||||
model_type:norm_train
|
||||
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
|
||||
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
|
||||
===========================infer_benchmark_params==========================
|
||||
|
|
|
@ -53,6 +53,7 @@ null:null
|
|||
batch_size:512
|
||||
fp_items:fp32|fp16
|
||||
epoch:1
|
||||
model_type:norm_train
|
||||
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
|
||||
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
|
||||
===========================infer_benchmark_params==========================
|
||||
|
|
|
@ -53,6 +53,7 @@ null:null
|
|||
batch_size:512
|
||||
fp_items:fp32|fp16
|
||||
epoch:1
|
||||
model_type:norm_train
|
||||
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
|
||||
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
|
||||
===========================infer_benchmark_params==========================
|
||||
|
|
|
@ -53,6 +53,7 @@ null:null
|
|||
batch_size:512
|
||||
fp_items:fp32|fp16
|
||||
epoch:1
|
||||
model_type:norm_train
|
||||
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
|
||||
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
|
||||
===========================infer_benchmark_params==========================
|
||||
|
|
|
@ -53,6 +53,7 @@ null:null
|
|||
batch_size:256
|
||||
fp_items:fp32|fp16
|
||||
epoch:1
|
||||
model_type:norm_train
|
||||
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
|
||||
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
|
||||
===========================infer_benchmark_params==========================
|
||||
|
|
|
@ -53,6 +53,7 @@ null:null
|
|||
batch_size:500
|
||||
fp_items:fp32|fp16
|
||||
epoch:1
|
||||
model_type:norm_train
|
||||
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
|
||||
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
|
||||
===========================infer_benchmark_params==========================
|
||||
|
|
|
@ -54,6 +54,7 @@ null:null
|
|||
batch_size:128
|
||||
fp_items:fp32
|
||||
epoch:1
|
||||
model_type:norm_train
|
||||
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
|
||||
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
|
||||
===========================infer_benchmark_params==========================
|
||||
|
|
|
@ -50,5 +50,12 @@ inference:python/predict_cls.py -c configs/inference_cls.yaml
|
|||
-o Global.benchmark:False
|
||||
null:null
|
||||
null:null
|
||||
===========================train_benchmark_params==========================
|
||||
batch_size:64
|
||||
fp_items:fp32|fp16
|
||||
epoch:1
|
||||
model_type:norm_train|to_static_train
|
||||
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
|
||||
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
|
||||
===========================infer_benchmark_params==========================
|
||||
random_infer_input:[{float32,[3,224,224]}]
|
|
@ -20,7 +20,7 @@ distill_train:null
|
|||
to_static_train:-o Global.to_static=True
|
||||
null:null
|
||||
##
|
||||
===========================eval_params===========================
|
||||
===========================eval_params===========================
|
||||
eval:tools/eval.py -c ppcls/configs/ImageNet/ResNet/ResNet152.yaml
|
||||
null:null
|
||||
##
|
||||
|
@ -54,7 +54,8 @@ null:null
|
|||
batch_size:32|64
|
||||
fp_items:fp32|fp16
|
||||
epoch:1
|
||||
model_type:norm_train
|
||||
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
|
||||
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
|
||||
===========================infer_benchmark_params==========================
|
||||
random_infer_input:[{float32,[3,224,224]}]
|
||||
random_infer_input:[{float32,[3,224,224]}]
|
||||
|
|
|
@ -20,7 +20,7 @@ distill_train:null
|
|||
to_static_train:-o Global.to_static=True
|
||||
null:null
|
||||
##
|
||||
===========================eval_params===========================
|
||||
===========================eval_params===========================
|
||||
eval:tools/eval.py -c ppcls/configs/ImageNet/ResNet/ResNet50.yaml
|
||||
null:null
|
||||
##
|
||||
|
@ -54,3 +54,4 @@ null:null
|
|||
batch_size:128|256
|
||||
fp_items:ampfp16
|
||||
epoch:1
|
||||
model_type:norm_train
|
||||
|
|
|
@ -20,7 +20,7 @@ distill_train:null
|
|||
to_static_train:-o Global.to_static=True
|
||||
null:null
|
||||
##
|
||||
===========================eval_params===========================
|
||||
===========================eval_params===========================
|
||||
eval:tools/eval.py -c ppcls/configs/ImageNet/ResNet/ResNet50.yaml
|
||||
null:null
|
||||
##
|
||||
|
@ -54,7 +54,8 @@ null:null
|
|||
batch_size:128|64
|
||||
fp_items:fp32|fp16
|
||||
epoch:1
|
||||
model_type:norm_train|to_static_train
|
||||
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
|
||||
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
|
||||
===========================infer_benchmark_params==========================
|
||||
random_infer_input:[{float32,[3,224,224]}]
|
||||
random_infer_input:[{float32,[3,224,224]}]
|
||||
|
|
|
@ -54,7 +54,8 @@ null:null
|
|||
batch_size:128
|
||||
fp_items:fp32
|
||||
epoch:1
|
||||
model_type:norm_train
|
||||
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
|
||||
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
|
||||
===========================infer_benchmark_params==========================
|
||||
random_infer_input:[{float32,[3,224,224]}]
|
||||
random_infer_input:[{float32,[3,224,224]}]
|
||||
|
|
|
@ -54,3 +54,4 @@ null:null
|
|||
batch_size:128|256
|
||||
fp_items:purefp16
|
||||
epoch:1
|
||||
model_type:norm_train
|
||||
|
|
|
@ -54,7 +54,8 @@ null:null
|
|||
batch_size:128
|
||||
fp_items:fp32
|
||||
epoch:1
|
||||
model_type:norm_train
|
||||
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
|
||||
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
|
||||
===========================infer_benchmark_params==========================
|
||||
random_infer_input:[{float32,[3,224,224]}]
|
||||
random_infer_input:[{float32,[3,224,224]}]
|
||||
|
|
|
@ -20,7 +20,7 @@ distill_train:null
|
|||
to_static_train:-o Global.to_static=True
|
||||
null:null
|
||||
##
|
||||
===========================eval_params===========================
|
||||
===========================eval_params===========================
|
||||
eval:tools/eval.py -c ppcls/configs/ImageNet/ResNet/ResNet50.yaml
|
||||
null:null
|
||||
##
|
||||
|
@ -54,7 +54,8 @@ null:null
|
|||
batch_size:128
|
||||
fp_items:fp32
|
||||
epoch:1
|
||||
model_type:norm_train
|
||||
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
|
||||
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
|
||||
===========================infer_benchmark_params==========================
|
||||
random_infer_input:[{float32,[3,224,224]}]
|
||||
random_infer_input:[{float32,[3,224,224]}]
|
||||
|
|
|
@ -54,7 +54,8 @@ null:null
|
|||
batch_size:64
|
||||
fp_items:fp32|fp16
|
||||
epoch:1
|
||||
model_type:norm_train
|
||||
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
|
||||
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
|
||||
===========================infer_benchmark_params==========================
|
||||
random_infer_input:[{float32,[3,224,224]}]
|
||||
random_infer_input:[{float32,[3,224,224]}]
|
||||
|
|
|
@ -54,7 +54,8 @@ null:null
|
|||
batch_size:128
|
||||
fp_items:fp32
|
||||
epoch:1
|
||||
model_type:norm_train
|
||||
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
|
||||
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
|
||||
===========================infer_benchmark_params==========================
|
||||
random_infer_input:[{float32,[3,224,224]}]
|
||||
random_infer_input:[{float32,[3,224,224]}]
|
||||
|
|
|
@ -20,7 +20,7 @@ distill_train:null
|
|||
to_static_train:-o Global.to_static=True
|
||||
null:null
|
||||
##
|
||||
===========================eval_params===========================
|
||||
===========================eval_params===========================
|
||||
eval:tools/eval.py -c ppcls/configs/ImageNet/ResNet/ResNet50_vd.yaml
|
||||
null:null
|
||||
##
|
||||
|
@ -54,7 +54,8 @@ null:null
|
|||
batch_size:128
|
||||
fp_items:fp32
|
||||
epoch:1
|
||||
model_type:norm_train
|
||||
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
|
||||
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
|
||||
===========================infer_benchmark_params==========================
|
||||
random_infer_input:[{float32,[3,224,224]}]
|
||||
random_infer_input:[{float32,[3,224,224]}]
|
||||
|
|
|
@ -20,7 +20,7 @@ distill_train:null
|
|||
to_static_train:-o Global.to_static=True
|
||||
null:null
|
||||
##
|
||||
===========================eval_params===========================
|
||||
===========================eval_params===========================
|
||||
eval:tools/eval.py -c ppcls/configs/ImageNet/ShuffleNet/ShuffleNetV2_x1_0.yaml
|
||||
null:null
|
||||
##
|
||||
|
@ -54,7 +54,8 @@ null:null
|
|||
batch_size:256|1536
|
||||
fp_items:fp32|fp16
|
||||
epoch:2
|
||||
model_type:norm_train
|
||||
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
|
||||
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
|
||||
===========================infer_benchmark_params==========================
|
||||
random_infer_input:[{float32,[3,224,224]}]
|
||||
random_infer_input:[{float32,[3,224,224]}]
|
||||
|
|
|
@ -20,7 +20,7 @@ distill_train:null
|
|||
null:null
|
||||
null:null
|
||||
##
|
||||
===========================eval_params===========================
|
||||
===========================eval_params===========================
|
||||
eval:tools/eval.py -c ppcls/configs/ImageNet/SwinTransformer/SwinTransformer_tiny_patch4_window7_224.yaml
|
||||
null:null
|
||||
##
|
||||
|
@ -54,7 +54,8 @@ null:null
|
|||
batch_size:104|128
|
||||
fp_items:fp32|fp16
|
||||
epoch:1
|
||||
model_type:norm_train|to_static_train
|
||||
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
|
||||
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
|
||||
===========================infer_benchmark_params==========================
|
||||
random_infer_input:[{float32,[3,224,224]}]
|
||||
random_infer_input:[{float32,[3,224,224]}]
|
||||
|
|
|
@ -20,7 +20,7 @@ distill_train:null
|
|||
null:null
|
||||
null:null
|
||||
##
|
||||
===========================eval_params===========================
|
||||
===========================eval_params===========================
|
||||
eval:tools/eval.py -c ppcls/configs/ImageNet/SwinTransformer/SwinTransformer_tiny_patch4_window7_224.yaml
|
||||
null:null
|
||||
##
|
||||
|
@ -54,7 +54,8 @@ null:null
|
|||
batch_size:64|104
|
||||
fp_items:fp32
|
||||
epoch:1
|
||||
model_type:norm_train
|
||||
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
|
||||
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
|
||||
===========================infer_benchmark_params==========================
|
||||
random_infer_input:[{float32,[3,224,224]}]
|
||||
random_infer_input:[{float32,[3,224,224]}]
|
||||
|
|
|
@ -20,7 +20,7 @@ distill_train:null
|
|||
null:null
|
||||
null:null
|
||||
##
|
||||
===========================eval_params===========================
|
||||
===========================eval_params===========================
|
||||
eval:tools/eval.py -c ppcls/configs/ImageNet/SwinTransformer/SwinTransformer_tiny_patch4_window7_224.yaml -o Slim.quant.name=pact
|
||||
null:null
|
||||
##
|
||||
|
@ -54,7 +54,8 @@ null:null
|
|||
batch_size:64|104
|
||||
fp_items:fp32
|
||||
epoch:1
|
||||
model_type:norm_train
|
||||
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
|
||||
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
|
||||
===========================infer_benchmark_params==========================
|
||||
random_infer_input:[{float32,[3,224,224]}]
|
||||
random_infer_input:[{float32,[3,224,224]}]
|
||||
|
|
|
@ -20,7 +20,7 @@ distill_train:null
|
|||
null:null
|
||||
null:null
|
||||
##
|
||||
===========================eval_params===========================
|
||||
===========================eval_params===========================
|
||||
eval:tools/eval.py -c ppcls/configs/ImageNet/SwinTransformer/SwinTransformer_tiny_patch4_window7_224.yaml
|
||||
null:null
|
||||
##
|
||||
|
@ -54,7 +54,8 @@ null:null
|
|||
batch_size:64|104
|
||||
fp_items:fp32
|
||||
epoch:1
|
||||
model_type:norm_train
|
||||
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
|
||||
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
|
||||
===========================infer_benchmark_params==========================
|
||||
random_infer_input:[{float32,[3,224,224]}]
|
||||
random_infer_input:[{float32,[3,224,224]}]
|
||||
|
|
|
@ -20,7 +20,7 @@ distill_train:null
|
|||
null:null
|
||||
null:null
|
||||
##
|
||||
===========================eval_params===========================
|
||||
===========================eval_params===========================
|
||||
eval:tools/eval.py -c ppcls/configs/ImageNet/Twins/alt_gvt_base.yaml
|
||||
null:null
|
||||
##
|
||||
|
@ -54,6 +54,7 @@ null:null
|
|||
batch_size:64|144
|
||||
fp_items:fp32
|
||||
epoch:1
|
||||
model_type:norm_train
|
||||
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
|
||||
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
|
||||
===========================infer_benchmark_params==========================
|
||||
|
|
|
@ -20,7 +20,7 @@ distill_train:null
|
|||
null:null
|
||||
null:null
|
||||
##
|
||||
===========================eval_params===========================
|
||||
===========================eval_params===========================
|
||||
eval:tools/eval.py -c ppcls/configs/ImageNet/Twins/alt_gvt_small.yaml
|
||||
null:null
|
||||
##
|
||||
|
@ -54,7 +54,8 @@ null:null
|
|||
batch_size:128
|
||||
fp_items:fp32|fp16
|
||||
epoch:1
|
||||
model_type:norm_train
|
||||
--profiler_options:batch_range=[10,20];state=GPU;tracer_option=Default;profile_path=model.profile
|
||||
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096
|
||||
===========================infer_benchmark_params==========================
|
||||
random_infer_input:[{float32,[3,224,224]}]
|
||||
random_infer_input:[{float32,[3,224,224]}]
|
||||
|
|
Loading…
Reference in New Issue