fix mixnet review problems
parent
ea63084670
commit
2e14f726d0
docs
ppcls/modeling/architectures
|
@ -7,7 +7,7 @@
|
|||
PaddleClas is a toolset for image classification tasks prepared for the industry and academia. It helps users train better computer vision models and apply them in real scenarios.
|
||||
|
||||
**Recent update**
|
||||
- 2021.04.15 Add `MixNet` and `ReXNet` pretrained models, `MixNet`'s Top-1 Acc on ImageNet-1k reaches 78.6% and `ReXNet` reaches 82.09%.
|
||||
- 2021.04.15 Add `MixNet` and `ReXNet` pretrained models, `MixNet_L`'s Top-1 Acc on ImageNet-1k reaches 78.6% and `ReXNet_3_0` reaches 82.09%.
|
||||
- 2021.03.02 Add support for model quantization.
|
||||
- 2021.02.01 Add `RepVGG` pretrained models, whose Top-1 Acc on ImageNet-1k dataset reaches 79.65%.
|
||||
- 2021.01.27 Add `ViT` and `DeiT` pretrained models, `ViT`'s Top-1 Acc on ImageNet-1k dataset reaches 85.13%, and `DeiT` reaches 85.1%.
|
||||
|
|
|
@ -8,7 +8,7 @@
|
|||
|
||||
**近期更新**
|
||||
|
||||
- 2021.04.15 添加`MixNet`和`ReXNet`系列模型,在ImageNet-1k上`MixNet` 模型Top1 Acc可达78.6%,`ReXNet`模型可达82.09%
|
||||
- 2021.04.15 添加`MixNet`和`ReXNet`系列模型,在ImageNet-1k上`MixNet_L` 模型Top1 Acc可达78.6%,`ReXNet_3_0`模型可达82.09%
|
||||
- 2021.03.02 添加分类模型量化方法与使用教程。
|
||||
- 2021.02.01 添加`RepVGG`系列模型,在ImageNet-1k上Top-1 Acc可达79.65%。
|
||||
- 2021.01.27 添加`ViT`与`DeiT`模型,在ImageNet-1k上,`ViT`模型Top-1 Acc可达85.13%,`DeiT`模型可达85.1%。
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
|
||||
|
||||
- 2021.04.15
|
||||
- Add `MixNet` and `ReXNet` pretrained models, `MixNet`'s Top-1 Acc on ImageNet-1k reaches 78.6% and `ReXNet` reaches 82.09%.
|
||||
- Add `MixNet` and `ReXNet` pretrained models, `MixNet_L`'s Top-1 Acc on ImageNet-1k reaches 78.6% and `ReXNet_3_0` reaches 82.09%.
|
||||
- 2021.01.27
|
||||
* Add ViT and DeiT pretrained models, ViT's Top-1 Acc on ImageNet reaches 81.05%, and DeiT reaches 85.5%.
|
||||
- 2021.01.08
|
||||
|
|
|
@ -3,7 +3,7 @@
|
|||
|
||||
|
||||
- 2021.04.15
|
||||
- 添加`MixNet`和`ReXNet`系列模型,在ImageNet-1k上`MixNet` 模型Top1 Acc可达78.6%,`ReXNet`模型可达82.09%
|
||||
- 添加`MixNet_L`和`ReXNet_3_0`系列模型,在ImageNet-1k上`MixNet` 模型Top1 Acc可达78.6%,`ReXNet`模型可达82.09%
|
||||
- 2021.01.27
|
||||
* 添加ViT与DeiT模型,在ImageNet上,ViT模型Top-1 Acc可达81.05%,DeiT模型可达85.5%。
|
||||
- 2021.01.08
|
||||
|
|
|
@ -438,8 +438,7 @@ class MixUnit(nn.Layer):
|
|||
in_channels : int
|
||||
Number of input channels.
|
||||
out_channels : int
|
||||
Number of output channels.
|
||||
exp_channels : int
|
||||
Number of output channels. exp_channels : int
|
||||
Number of middle (expanded) channels.
|
||||
stride : int or tuple/list of 2 int
|
||||
Strides of the second convolution layer.
|
||||
|
@ -692,12 +691,7 @@ class MixNet(nn.Layer):
|
|||
return x
|
||||
|
||||
|
||||
def get_mixnet(version,
|
||||
width_scale,
|
||||
model_name=None,
|
||||
pretrained=False,
|
||||
root=os.path.join("~", ".paddle", "models"),
|
||||
**kwargs):
|
||||
def get_mixnet(version, width_scale, model_name=None, **kwargs):
|
||||
"""
|
||||
Create MixNet model with specific parameters.
|
||||
|
||||
|
@ -708,11 +702,7 @@ def get_mixnet(version,
|
|||
width_scale : float
|
||||
Scale factor for width of layers.
|
||||
model_name : str or None, default None
|
||||
Model name for loading pretrained model.
|
||||
pretrained : bool, default False
|
||||
Whether to load the pretrained weights for model.
|
||||
root : str, default '~/.torch/models'
|
||||
Location for keeping the model parameters.
|
||||
Model name.
|
||||
"""
|
||||
|
||||
if version == "s":
|
||||
|
@ -769,13 +759,6 @@ def MixNet_S(**kwargs):
|
|||
"""
|
||||
MixNet-S model from 'MixConv: Mixed Depthwise Convolutional Kernels,'
|
||||
https://arxiv.org/abs/1907.09595.
|
||||
|
||||
Parameters:
|
||||
----------
|
||||
pretrained : bool, default False
|
||||
Whether to load the pretrained weights for model.
|
||||
root : str, default '~/.torch/models'
|
||||
Location for keeping the model parameters.
|
||||
"""
|
||||
return get_mixnet(
|
||||
version="s", width_scale=1.0, model_name="MixNet_S", **kwargs)
|
||||
|
@ -785,13 +768,6 @@ def MixNet_M(**kwargs):
|
|||
"""
|
||||
MixNet-M model from 'MixConv: Mixed Depthwise Convolutional Kernels,'
|
||||
https://arxiv.org/abs/1907.09595.
|
||||
|
||||
Parameters:
|
||||
----------
|
||||
pretrained : bool, default False
|
||||
Whether to load the pretrained weights for model.
|
||||
root : str, default '~/.torch/models'
|
||||
Location for keeping the model parameters.
|
||||
"""
|
||||
return get_mixnet(
|
||||
version="m", width_scale=1.0, model_name="MixNet_M", **kwargs)
|
||||
|
@ -801,13 +777,6 @@ def MixNet_L(**kwargs):
|
|||
"""
|
||||
MixNet-L model from 'MixConv: Mixed Depthwise Convolutional Kernels,'
|
||||
https://arxiv.org/abs/1907.09595.
|
||||
|
||||
Parameters:
|
||||
----------
|
||||
pretrained : bool, default False
|
||||
Whether to load the pretrained weights for model.
|
||||
root : str, default '~/.torch/models'
|
||||
Location for keeping the model parameters.
|
||||
"""
|
||||
return get_mixnet(
|
||||
version="m", width_scale=1.3, model_name="MixNet_L", **kwargs)
|
||||
|
|
Loading…
Reference in New Issue