update sophgo
parent
60ec4bab2c
commit
354c36d4c0
|
@ -1,15 +1,20 @@
|
|||
import fastdeploy as fd
|
||||
import cv2
|
||||
import os
|
||||
from subprocess import run
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
import argparse
|
||||
import ast
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--model", required=True, help="Path of model.")
|
||||
parser.add_argument(
|
||||
"--config_file", required=True, help="Path of config file.")
|
||||
"--auto",
|
||||
required=True,
|
||||
help="Auto download, convert, compile and infer if True")
|
||||
parser.add_argument("--model", required=True, help="Path of bmodel")
|
||||
parser.add_argument(
|
||||
"--config_file", required=True, help="Path of config file")
|
||||
parser.add_argument(
|
||||
"--image", type=str, required=True, help="Path of test image file.")
|
||||
parser.add_argument(
|
||||
|
@ -18,16 +23,95 @@ def parse_arguments():
|
|||
return parser.parse_args()
|
||||
|
||||
|
||||
def download():
|
||||
cmd_str = 'wget https://bj.bcebos.com/paddlehub/fastdeploy/ResNet50_vd_infer.tgz'
|
||||
jpg_str = 'wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg'
|
||||
tar_str = 'tar xvf ResNet50_vd_infer.tgz'
|
||||
if not os.path.exists('ResNet50_vd_infer.tgz'):
|
||||
run(cmd_str, shell=True)
|
||||
if not os.path.exists('ILSVRC2012_val_00000010.jpeg'):
|
||||
run(jpg_str, shell=True)
|
||||
run(tar_str, shell=True)
|
||||
|
||||
|
||||
def paddle2onnx():
|
||||
cmd_str = 'paddle2onnx --model_dir ResNet50_vd_infer \
|
||||
--model_filename inference.pdmodel \
|
||||
--params_filename inference.pdiparams \
|
||||
--save_file ResNet50_vd_infer.onnx \
|
||||
--enable_dev_version True'
|
||||
|
||||
print(cmd_str)
|
||||
run(cmd_str, shell=True)
|
||||
|
||||
|
||||
def mlir_prepare():
|
||||
mlir_path = os.getenv("MODEL_ZOO_PATH")
|
||||
mlir_path = mlir_path[:-13]
|
||||
cmd_list = [
|
||||
'mkdir ResNet50', 'cp -rf ' + os.path.join(
|
||||
mlir_path, 'regression/dataset/COCO2017/') + ' ./ResNet50',
|
||||
'cp -rf ' + os.path.join(mlir_path,
|
||||
'regression/image/') + ' ./ResNet50',
|
||||
'cp ResNet50_vd_infer.onnx ./ResNet50/', 'mkdir ./ResNet50/workspace'
|
||||
]
|
||||
for str in cmd_list:
|
||||
print(str)
|
||||
run(str, shell=True)
|
||||
|
||||
|
||||
def onnx2mlir():
|
||||
cmd_str = 'model_transform.py \
|
||||
--model_name ResNet50_vd_infer \
|
||||
--model_def ../ResNet50_vd_infer.onnx \
|
||||
--input_shapes [[1,3,224,224]] \
|
||||
--mean 0.0,0.0,0.0 \
|
||||
--scale 0.0039216,0.0039216,0.0039216 \
|
||||
--keep_aspect_ratio \
|
||||
--pixel_format rgb \
|
||||
--output_names save_infer_model/scale_0.tmp_1 \
|
||||
--test_input ../image/dog.jpg \
|
||||
--test_result ./ResNet50_vd_infer_top_outputs.npz \
|
||||
--mlir ./ResNet50_vd_infer.mlir'
|
||||
|
||||
print(cmd_str)
|
||||
os.chdir('./ResNet50/workspace/')
|
||||
run(cmd_str, shell=True)
|
||||
os.chdir('../../')
|
||||
|
||||
|
||||
def mlir2bmodel():
|
||||
cmd_str = 'model_deploy.py \
|
||||
--mlir ./ResNet50_vd_infer.mlir \
|
||||
--quantize F32 \
|
||||
--chip bm1684x \
|
||||
--test_input ./ResNet50_vd_infer_in_f32.npz \
|
||||
--test_reference ./ResNet50_vd_infer_top_outputs.npz \
|
||||
--model ./ResNet50_vd_infer_1684x_f32.bmodel'
|
||||
|
||||
print(cmd_str)
|
||||
os.chdir('./ResNet50/workspace')
|
||||
run(cmd_str, shell=True)
|
||||
os.chdir('../../')
|
||||
|
||||
|
||||
args = parse_arguments()
|
||||
|
||||
# 配置runtime,加载模型
|
||||
if (args.auto):
|
||||
download()
|
||||
paddle2onnx()
|
||||
mlir_prepare()
|
||||
onnx2mlir()
|
||||
mlir2bmodel()
|
||||
|
||||
# config runtime and load the model
|
||||
runtime_option = fd.RuntimeOption()
|
||||
runtime_option.use_sophgo()
|
||||
|
||||
model_file = args.model
|
||||
model_file = './ResNet50/workspace/ResNet50_vd_infer_1684x_f32.bmodel' if args.auto else args.model
|
||||
params_file = ""
|
||||
config_file = args.config_file
|
||||
|
||||
config_file = './ResNet50_vd_infer/inference_cls.yaml' if args.auto else args.config_file
|
||||
image_file = './ILSVRC2012_val_00000010.jpeg' if args.auto else args.image
|
||||
model = fd.vision.classification.PaddleClasModel(
|
||||
model_file,
|
||||
params_file,
|
||||
|
@ -35,7 +119,7 @@ model = fd.vision.classification.PaddleClasModel(
|
|||
runtime_option=runtime_option,
|
||||
model_format=fd.ModelFormat.SOPHGO)
|
||||
|
||||
# 预测图片分类结果
|
||||
im = cv2.imread(args.image)
|
||||
# predict the results of image classification
|
||||
im = cv2.imread(image_file)
|
||||
result = model.predict(im, args.topk)
|
||||
print(result)
|
||||
|
|
|
@ -9,7 +9,6 @@
|
|||
## 2.运行部署示例
|
||||
```bash
|
||||
# 下载部署示例代码
|
||||
# 下载部署示例代码
|
||||
git clone https://github.com/PaddlePaddle/FastDeploy.git
|
||||
cd FastDeploy/examples/vision/classification/paddleclas/sophgo/python
|
||||
|
||||
|
@ -23,7 +22,10 @@ cd PaddleClas/deploy/fastdeploy/sophgo/python
|
|||
wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
|
||||
|
||||
# 推理转换好的模型
|
||||
python3 infer.py --model_file ./bmodel/resnet50_1684x_f32.bmodel --config_file ResNet50_vd_infer/inference_cls.yaml --image ILSVRC2012_val_00000010.jpeg
|
||||
# 手动设置推理使用的模型、配置文件和图片路径
|
||||
python3 infer.py --auto False --model_file ./bmodel/resnet50_1684x_f32.bmodel --config_file ResNet50_vd_infer/inference_cls.yaml --image ILSVRC2012_val_00000010.jpeg
|
||||
# 自动完成下载数据-模型编译-推理,不需要设置模型、配置文件和图片路径
|
||||
python3 infer.py --auto True --model '' --config_file '' --image ''
|
||||
|
||||
# 运行完成后返回结果如下所示
|
||||
ClassifyResult(
|
||||
|
|
Loading…
Reference in New Issue