mirror of
https://github.com/PaddlePaddle/PaddleClas.git
synced 2025-06-03 21:55:06 +08:00
Merge pull request #1064 from TingquanGao/dev/Support_enable_cutmix_mixup
support to enable mixup and cutmix at same time
This commit is contained in:
commit
36aeefcf4c
@ -29,7 +29,7 @@ from ppcls.data.preprocess.ops.operators import NormalizeImage
|
|||||||
from ppcls.data.preprocess.ops.operators import ToCHWImage
|
from ppcls.data.preprocess.ops.operators import ToCHWImage
|
||||||
from ppcls.data.preprocess.ops.operators import AugMix
|
from ppcls.data.preprocess.ops.operators import AugMix
|
||||||
|
|
||||||
from ppcls.data.preprocess.batch_ops.batch_operators import MixupOperator, CutmixOperator, FmixOperator
|
from ppcls.data.preprocess.batch_ops.batch_operators import MixupOperator, CutmixOperator, OpSampler, FmixOperator
|
||||||
|
|
||||||
import six
|
import six
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@ -45,6 +45,7 @@ def transform(data, ops=[]):
|
|||||||
|
|
||||||
class AutoAugment(RawImageNetPolicy):
|
class AutoAugment(RawImageNetPolicy):
|
||||||
""" ImageNetPolicy wrapper to auto fit different img types """
|
""" ImageNetPolicy wrapper to auto fit different img types """
|
||||||
|
|
||||||
def __init__(self, *args, **kwargs):
|
def __init__(self, *args, **kwargs):
|
||||||
if six.PY2:
|
if six.PY2:
|
||||||
super(AutoAugment, self).__init__(*args, **kwargs)
|
super(AutoAugment, self).__init__(*args, **kwargs)
|
||||||
@ -69,6 +70,7 @@ class AutoAugment(RawImageNetPolicy):
|
|||||||
|
|
||||||
class RandAugment(RawRandAugment):
|
class RandAugment(RawRandAugment):
|
||||||
""" RandAugment wrapper to auto fit different img types """
|
""" RandAugment wrapper to auto fit different img types """
|
||||||
|
|
||||||
def __init__(self, *args, **kwargs):
|
def __init__(self, *args, **kwargs):
|
||||||
if six.PY2:
|
if six.PY2:
|
||||||
super(RandAugment, self).__init__(*args, **kwargs)
|
super(RandAugment, self).__init__(*args, **kwargs)
|
||||||
|
@ -16,13 +16,17 @@ from __future__ import absolute_import
|
|||||||
from __future__ import division
|
from __future__ import division
|
||||||
from __future__ import print_function
|
from __future__ import print_function
|
||||||
from __future__ import unicode_literals
|
from __future__ import unicode_literals
|
||||||
|
import random
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
|
from ppcls.utils import logger
|
||||||
from ppcls.data.preprocess.ops.fmix import sample_mask
|
from ppcls.data.preprocess.ops.fmix import sample_mask
|
||||||
|
|
||||||
|
|
||||||
class BatchOperator(object):
|
class BatchOperator(object):
|
||||||
""" BatchOperator """
|
""" BatchOperator """
|
||||||
|
|
||||||
def __init__(self, *args, **kwargs):
|
def __init__(self, *args, **kwargs):
|
||||||
pass
|
pass
|
||||||
|
|
||||||
@ -46,9 +50,20 @@ class BatchOperator(object):
|
|||||||
|
|
||||||
class MixupOperator(BatchOperator):
|
class MixupOperator(BatchOperator):
|
||||||
""" Mixup operator """
|
""" Mixup operator """
|
||||||
def __init__(self, alpha=0.2):
|
|
||||||
assert alpha > 0., \
|
def __init__(self, alpha: float=1.):
|
||||||
'parameter alpha[%f] should > 0.0' % (alpha)
|
"""Build Mixup operator
|
||||||
|
|
||||||
|
Args:
|
||||||
|
alpha (float, optional): The parameter alpha of mixup. Defaults to 1..
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
Exception: The value of parameter is illegal.
|
||||||
|
"""
|
||||||
|
if alpha <= 0:
|
||||||
|
raise Exception(
|
||||||
|
f"Parameter \"alpha\" of Mixup should be greater than 0. \"alpha\": {alpha}."
|
||||||
|
)
|
||||||
self._alpha = alpha
|
self._alpha = alpha
|
||||||
|
|
||||||
def __call__(self, batch):
|
def __call__(self, batch):
|
||||||
@ -62,9 +77,20 @@ class MixupOperator(BatchOperator):
|
|||||||
|
|
||||||
class CutmixOperator(BatchOperator):
|
class CutmixOperator(BatchOperator):
|
||||||
""" Cutmix operator """
|
""" Cutmix operator """
|
||||||
|
|
||||||
def __init__(self, alpha=0.2):
|
def __init__(self, alpha=0.2):
|
||||||
assert alpha > 0., \
|
"""Build Cutmix operator
|
||||||
'parameter alpha[%f] should > 0.0' % (alpha)
|
|
||||||
|
Args:
|
||||||
|
alpha (float, optional): The parameter alpha of cutmix. Defaults to 0.2.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
Exception: The value of parameter is illegal.
|
||||||
|
"""
|
||||||
|
if alpha <= 0:
|
||||||
|
raise Exception(
|
||||||
|
f"Parameter \"alpha\" of Cutmix should be greater than 0. \"alpha\": {alpha}."
|
||||||
|
)
|
||||||
self._alpha = alpha
|
self._alpha = alpha
|
||||||
|
|
||||||
def _rand_bbox(self, size, lam):
|
def _rand_bbox(self, size, lam):
|
||||||
@ -72,8 +98,8 @@ class CutmixOperator(BatchOperator):
|
|||||||
w = size[2]
|
w = size[2]
|
||||||
h = size[3]
|
h = size[3]
|
||||||
cut_rat = np.sqrt(1. - lam)
|
cut_rat = np.sqrt(1. - lam)
|
||||||
cut_w = np.int(w * cut_rat)
|
cut_w = int(w * cut_rat)
|
||||||
cut_h = np.int(h * cut_rat)
|
cut_h = int(h * cut_rat)
|
||||||
|
|
||||||
# uniform
|
# uniform
|
||||||
cx = np.random.randint(w)
|
cx = np.random.randint(w)
|
||||||
@ -101,6 +127,7 @@ class CutmixOperator(BatchOperator):
|
|||||||
|
|
||||||
class FmixOperator(BatchOperator):
|
class FmixOperator(BatchOperator):
|
||||||
""" Fmix operator """
|
""" Fmix operator """
|
||||||
|
|
||||||
def __init__(self, alpha=1, decay_power=3, max_soft=0., reformulate=False):
|
def __init__(self, alpha=1, decay_power=3, max_soft=0., reformulate=False):
|
||||||
self._alpha = alpha
|
self._alpha = alpha
|
||||||
self._decay_power = decay_power
|
self._decay_power = decay_power
|
||||||
@ -115,3 +142,42 @@ class FmixOperator(BatchOperator):
|
|||||||
size, self._max_soft, self._reformulate)
|
size, self._max_soft, self._reformulate)
|
||||||
imgs = mask * imgs + (1 - mask) * imgs[idx]
|
imgs = mask * imgs + (1 - mask) * imgs[idx]
|
||||||
return list(zip(imgs, labels, labels[idx], [lam] * bs))
|
return list(zip(imgs, labels, labels[idx], [lam] * bs))
|
||||||
|
|
||||||
|
|
||||||
|
class OpSampler(object):
|
||||||
|
""" Sample a operator from """
|
||||||
|
|
||||||
|
def __init__(self, **op_dict):
|
||||||
|
"""Build OpSampler
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
Exception: The parameter \"prob\" of operator(s) are be set error.
|
||||||
|
"""
|
||||||
|
if len(op_dict) < 1:
|
||||||
|
msg = f"ConfigWarning: No operator in \"OpSampler\". \"OpSampler\" has been skipped."
|
||||||
|
|
||||||
|
self.ops = {}
|
||||||
|
total_prob = 0
|
||||||
|
for op_name in op_dict:
|
||||||
|
param = op_dict[op_name]
|
||||||
|
if "prob" not in param:
|
||||||
|
msg = f"ConfigWarning: Parameter \"prob\" should be set when use operator in \"OpSampler\". The operator \"{op_name}\"'s prob has been set \"0\"."
|
||||||
|
logger.warning(msg)
|
||||||
|
prob = param.pop("prob", 0)
|
||||||
|
total_prob += prob
|
||||||
|
op = eval(op_name)(**param)
|
||||||
|
self.ops.update({op: prob})
|
||||||
|
|
||||||
|
if total_prob > 1:
|
||||||
|
msg = f"ConfigError: The total prob of operators in \"OpSampler\" should be less 1."
|
||||||
|
logger.error(msg)
|
||||||
|
raise Exception(msg)
|
||||||
|
|
||||||
|
# add "None Op" when total_prob < 1, "None Op" do nothing
|
||||||
|
self.ops[None] = 1 - total_prob
|
||||||
|
|
||||||
|
def __call__(self, batch):
|
||||||
|
op = random.choices(
|
||||||
|
list(self.ops.keys()), weights=list(self.ops.values()), k=1)[0]
|
||||||
|
# return batch directly when None Op
|
||||||
|
return op(batch) if op else batch
|
||||||
|
Loading…
x
Reference in New Issue
Block a user