add yaml file
parent
2682384775
commit
3b69b6c854
|
@ -0,0 +1,77 @@
|
|||
mode: 'train'
|
||||
ARCHITECTURE:
|
||||
name: 'ResNet50_vd'
|
||||
params:
|
||||
lr_mult_list: [0.1, 0.1, 0.2, 0.2, 0.3]
|
||||
pretrained_model: "./pretrained/ResNet50_vd_ssld_pretrained"
|
||||
model_save_dir: "./output/"
|
||||
classes_num: 102
|
||||
total_images: 1020
|
||||
save_interval: 1
|
||||
validate: True
|
||||
valid_interval: 1
|
||||
epochs: 40
|
||||
topk: 5
|
||||
image_shape: [3, 224, 224]
|
||||
|
||||
ls_epsilon: 0.1
|
||||
|
||||
LEARNING_RATE:
|
||||
function: 'Cosine'
|
||||
params:
|
||||
lr: 0.00375
|
||||
|
||||
OPTIMIZER:
|
||||
function: 'Momentum'
|
||||
params:
|
||||
momentum: 0.9
|
||||
regularizer:
|
||||
function: 'L2'
|
||||
factor: 0.000001
|
||||
|
||||
TRAIN:
|
||||
batch_size: 32
|
||||
num_workers: 4
|
||||
file_list: "./dataset/flowers102/train_list.txt"
|
||||
data_dir: "./dataset/flowers102/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- RandCropImage:
|
||||
size: 224
|
||||
- RandFlipImage:
|
||||
flip_code: 1
|
||||
- NormalizeImage:
|
||||
scale: 1./255.
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
||||
mix:
|
||||
- MixupOperator:
|
||||
alpha: 0.2
|
||||
|
||||
VALID:
|
||||
batch_size: 32
|
||||
num_workers: 4
|
||||
file_list: "./dataset/flowers102/val_list.txt"
|
||||
data_dir: "./dataset/flowers102/"
|
||||
shuffle_seed: 0
|
||||
transforms:
|
||||
- DecodeImage:
|
||||
to_rgb: True
|
||||
to_np: False
|
||||
channel_first: False
|
||||
- ResizeImage:
|
||||
resize_short: 256
|
||||
- CropImage:
|
||||
size: 224
|
||||
- NormalizeImage:
|
||||
scale: 1.0/255.0
|
||||
mean: [0.485, 0.456, 0.406]
|
||||
std: [0.229, 0.224, 0.225]
|
||||
order: ''
|
||||
- ToCHWImage:
|
|
@ -101,7 +101,7 @@ def create_model(architecture, image, classes_num):
|
|||
out(variable): model output variable
|
||||
"""
|
||||
name = architecture["name"]
|
||||
params = architecture["params"] if "params" in architecture else {}
|
||||
params = architecture.get("params", {})
|
||||
model = architectures.__dict__[name](**params)
|
||||
out = model.net(input=image, class_dim=classes_num)
|
||||
return out
|
||||
|
|
Loading…
Reference in New Issue