Add cls G1-G2 model lite tipc
parent
b761325faa
commit
3c29b0691d
|
@ -1,9 +1,9 @@
|
|||
ARM_ABI = arm8
|
||||
export ARM_ABI
|
||||
|
||||
include ../Makefile.def
|
||||
LITE_ROOT=./inference_lite_lib.android.armv8
|
||||
|
||||
LITE_ROOT=../../../
|
||||
include ${LITE_ROOT}/demo/cxx/Makefile.def
|
||||
|
||||
THIRD_PARTY_DIR=${LITE_ROOT}/third_party
|
||||
|
||||
|
@ -29,7 +29,7 @@ OPENCV_LIBS = ${THIRD_PARTY_DIR}/${OPENCV_VERSION}/${ARM_PATH}/libs/libopencv_im
|
|||
${THIRD_PARTY_DIR}/${OPENCV_VERSION}/${ARM_PATH}/3rdparty/libs/libtbb.a \
|
||||
${THIRD_PARTY_DIR}/${OPENCV_VERSION}/${ARM_PATH}/3rdparty/libs/libcpufeatures.a
|
||||
|
||||
OPENCV_INCLUDE = -I../../../third_party/${OPENCV_VERSION}/${ARM_PATH}/include
|
||||
OPENCV_INCLUDE = -I${LITE_ROOT}/third_party/${OPENCV_VERSION}/${ARM_PATH}/include
|
||||
|
||||
CXX_INCLUDES = $(INCLUDES) ${OPENCV_INCLUDE} -I$(LITE_ROOT)/cxx/include
|
||||
|
||||
|
|
|
@ -1,6 +1,11 @@
|
|||
clas_model_file ./MobileNetV3_large_x1_0.nb
|
||||
label_path ./imagenet1k_label_list.txt
|
||||
clas_model_file /data/local/tmp/arm_cpu/MobileNetV3_large_x1_0.nb
|
||||
label_path /data/local/tmp/arm_cpu/imagenet1k_label_list.txt
|
||||
resize_short_size 256
|
||||
crop_size 224
|
||||
visualize 0
|
||||
num_threads 1
|
||||
batch_size 1
|
||||
precision FP32
|
||||
runtime_device arm_cpu
|
||||
enable_benchmark 0
|
||||
tipc_benchmark 0
|
||||
|
|
|
@ -21,6 +21,7 @@
|
|||
#include <opencv2/opencv.hpp>
|
||||
#include <sys/time.h>
|
||||
#include <vector>
|
||||
#include "AutoLog/auto_log/lite_autolog.h"
|
||||
|
||||
using namespace paddle::lite_api; // NOLINT
|
||||
using namespace std;
|
||||
|
@ -149,8 +150,10 @@ cv::Mat CenterCropImg(const cv::Mat &img, const int &crop_size) {
|
|||
std::vector<RESULT>
|
||||
RunClasModel(std::shared_ptr<PaddlePredictor> predictor, const cv::Mat &img,
|
||||
const std::map<std::string, std::string> &config,
|
||||
const std::vector<std::string> &word_labels, double &cost_time) {
|
||||
const std::vector<std::string> &word_labels, double &cost_time,
|
||||
std::vector<double> *time_info) {
|
||||
// Read img
|
||||
auto preprocess_start = std::chrono::steady_clock::now();
|
||||
int resize_short_size = stoi(config.at("resize_short_size"));
|
||||
int crop_size = stoi(config.at("crop_size"));
|
||||
int visualize = stoi(config.at("visualize"));
|
||||
|
@ -172,8 +175,8 @@ RunClasModel(std::shared_ptr<PaddlePredictor> predictor, const cv::Mat &img,
|
|||
std::vector<float> scale = {1 / 0.229f, 1 / 0.224f, 1 / 0.225f};
|
||||
const float *dimg = reinterpret_cast<const float *>(img_fp.data);
|
||||
NeonMeanScale(dimg, data0, img_fp.rows * img_fp.cols, mean, scale);
|
||||
|
||||
auto start = std::chrono::system_clock::now();
|
||||
auto preprocess_end = std::chrono::steady_clock::now();
|
||||
auto inference_start = std::chrono::system_clock::now();
|
||||
// Run predictor
|
||||
predictor->Run();
|
||||
|
||||
|
@ -181,9 +184,10 @@ RunClasModel(std::shared_ptr<PaddlePredictor> predictor, const cv::Mat &img,
|
|||
std::unique_ptr<const Tensor> output_tensor(
|
||||
std::move(predictor->GetOutput(0)));
|
||||
auto *output_data = output_tensor->data<float>();
|
||||
auto end = std::chrono::system_clock::now();
|
||||
auto inference_end = std::chrono::system_clock::now();
|
||||
auto postprocess_start = std::chrono::system_clock::now();
|
||||
auto duration =
|
||||
std::chrono::duration_cast<std::chrono::microseconds>(end - start);
|
||||
std::chrono::duration_cast<std::chrono::microseconds>(inference_end - inference_start);
|
||||
cost_time = double(duration.count()) *
|
||||
std::chrono::microseconds::period::num /
|
||||
std::chrono::microseconds::period::den;
|
||||
|
@ -196,6 +200,13 @@ RunClasModel(std::shared_ptr<PaddlePredictor> predictor, const cv::Mat &img,
|
|||
cv::Mat output_image;
|
||||
auto results =
|
||||
PostProcess(output_data, output_size, word_labels, output_image);
|
||||
auto postprocess_end = std::chrono::system_clock::now();
|
||||
std::chrono::duration<float> preprocess_diff = preprocess_end - preprocess_start;
|
||||
time_info->push_back(double(preprocess_diff.count() * 1000));
|
||||
std::chrono::duration<float> inference_diff = inference_end - inference_start;
|
||||
time_info->push_back(double(inference_diff.count() * 1000));
|
||||
std::chrono::duration<float> postprocess_diff = postprocess_end - postprocess_start;
|
||||
time_info->push_back(double(postprocess_diff.count() * 1000));
|
||||
|
||||
if (visualize) {
|
||||
std::string output_image_path = "./clas_result.png";
|
||||
|
@ -309,6 +320,12 @@ int main(int argc, char **argv) {
|
|||
|
||||
std::string clas_model_file = config.at("clas_model_file");
|
||||
std::string label_path = config.at("label_path");
|
||||
std::string crop_size = config.at("crop_size");
|
||||
int num_threads = stoi(config.at("num_threads"));
|
||||
int batch_size = stoi(config.at("batch_size"));
|
||||
std::string precision = config.at("precision");
|
||||
std::string runtime_device = config.at("runtime_device");
|
||||
bool tipc_benchmark = bool(stoi(config.at("tipc_benchmark")));
|
||||
|
||||
// Load Labels
|
||||
std::vector<std::string> word_labels = LoadLabels(label_path);
|
||||
|
@ -319,8 +336,9 @@ int main(int argc, char **argv) {
|
|||
cv::cvtColor(srcimg, srcimg, cv::COLOR_BGR2RGB);
|
||||
|
||||
double run_time = 0;
|
||||
std::vector<double> time_info;
|
||||
std::vector<RESULT> results =
|
||||
RunClasModel(clas_predictor, srcimg, config, word_labels, run_time);
|
||||
RunClasModel(clas_predictor, srcimg, config, word_labels, run_time, &time_info);
|
||||
|
||||
std::cout << "===clas result for image: " << img_path << "===" << std::endl;
|
||||
for (int i = 0; i < results.size(); i++) {
|
||||
|
@ -338,6 +356,19 @@ int main(int argc, char **argv) {
|
|||
} else {
|
||||
std::cout << "Current time cost: " << run_time << " s." << std::endl;
|
||||
}
|
||||
if (tipc_benchmark) {
|
||||
AutoLogger autolog(clas_model_file,
|
||||
runtime_device,
|
||||
num_threads,
|
||||
batch_size,
|
||||
crop_size,
|
||||
precision,
|
||||
time_info,
|
||||
1);
|
||||
std::cout << "=======================TIPC Lite Information=======================" << std::endl;
|
||||
autolog.report();
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
return 0;
|
||||
|
|
|
@ -25,8 +25,8 @@ Paddle Lite是飞桨轻量化推理引擎,为手机、IOT端提供高效推理
|
|||
1. [建议]直接下载,预测库下载链接如下:
|
||||
|平台|预测库下载链接|
|
||||
|-|-|
|
||||
|Android|[arm7](https://paddlelite-data.bj.bcebos.com/Release/2.8-rc/Android/gcc/inference_lite_lib.android.armv7.gcc.c++_static.with_extra.with_cv.tar.gz) / [arm8](https://paddlelite-data.bj.bcebos.com/Release/2.8-rc/Android/gcc/inference_lite_lib.android.armv8.gcc.c++_static.with_extra.with_cv.tar.gz)|
|
||||
|iOS|[arm7](https://paddlelite-data.bj.bcebos.com/Release/2.8-rc/iOS/inference_lite_lib.ios.armv7.with_cv.with_extra.tiny_publish.tar.gz) / [arm8](https://paddlelite-data.bj.bcebos.com/Release/2.8-rc/iOS/inference_lite_lib.ios.armv8.with_cv.with_extra.tiny_publish.tar.gz)|
|
||||
|Android|[arm7](https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.10/inference_lite_lib.android.armv7.clang.c++_static.with_extra.with_cv.tar.gz) / [arm8](https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.10/inference_lite_lib.android.armv8.clang.c++_static.with_extra.with_cv.tar.gz)|
|
||||
|iOS|[arm7](https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.10/inference_lite_lib.ios.armv7.with_cv.with_extra.tiny_publish.tar.gz) / [arm8](https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.10/inference_lite_lib.ios.armv8.with_cv.with_extra.tiny_publish.tar.gz)|
|
||||
|
||||
**注**:
|
||||
1. 如果是从 Paddle-Lite [官方文档](https://paddle-lite.readthedocs.io/zh/latest/quick_start/release_lib.html#android-toolchain-gcc)下载的预测库,
|
||||
|
@ -44,11 +44,11 @@ git checkout develop
|
|||
|
||||
**注意**:编译Paddle-Lite获得预测库时,需要打开`--with_cv=ON --with_extra=ON`两个选项,`--arch`表示`arm`版本,这里指定为armv8,更多编译命令介绍请参考[链接](https://paddle-lite.readthedocs.io/zh/latest/user_guides/Compile/Android.html#id2)。
|
||||
|
||||
直接下载预测库并解压后,可以得到`inference_lite_lib.android.armv8/`文件夹,通过编译Paddle-Lite得到的预测库位于`Paddle-Lite/build.lite.android.armv8.gcc/inference_lite_lib.android.armv8/`文件夹下。
|
||||
直接下载预测库并解压后,可以得到`inference_lite_lib.android.armv8.clang.c++_static.with_extra.with_cv/`文件夹,通过编译Paddle-Lite得到的预测库位于`Paddle-Lite/build.lite.android.armv8.gcc/inference_lite_lib.android.armv8/`文件夹下。
|
||||
预测库的文件目录如下:
|
||||
|
||||
```
|
||||
inference_lite_lib.android.armv8/
|
||||
inference_lite_lib.android.armv8.clang.c++_static.with_extra.with_cv/
|
||||
|-- cxx C++ 预测库和头文件
|
||||
| |-- include C++ 头文件
|
||||
| | |-- paddle_api.h
|
||||
|
@ -86,7 +86,7 @@ Python下安装 `paddlelite`,目前最高支持`Python3.7`。
|
|||
**注意**:`paddlelite`whl包版本必须和预测库版本对应。
|
||||
|
||||
```shell
|
||||
pip install paddlelite==2.8
|
||||
pip install paddlelite==2.10
|
||||
```
|
||||
|
||||
之后使用`paddle_lite_opt`工具可以进行inference模型的转换。`paddle_lite_opt`的部分参数如下
|
||||
|
@ -146,6 +146,24 @@ paddle_lite_opt --model_file=./MobileNetV3_large_x1_0_infer/inference.pdmodel --
|
|||
|
||||
**注意**:`--optimize_out` 参数为优化后模型的保存路径,无需加后缀`.nb`;`--model_file` 参数为模型结构信息文件的路径,`--param_file` 参数为模型权重信息文件的路径,请注意文件名。
|
||||
|
||||
<a name="2.1.4"></a>
|
||||
|
||||
#### 2.1.4 执行编译,得到可执行文件clas_system
|
||||
|
||||
```shell
|
||||
# 克隆 Autolog 代码库,以便获取自动化日志
|
||||
cd PaddleClas_root_path
|
||||
cd deploy/lite/
|
||||
git clone https://github.com/LDOUBLEV/AutoLog.git
|
||||
```
|
||||
|
||||
```shell
|
||||
# 克隆 Autolog 代码库,以便获取自动化日志
|
||||
make -j
|
||||
```
|
||||
|
||||
执行 `make` 命令后,会在当前目录生成 `clas_system` 可执行文件,该文件用于 Lite 预测。
|
||||
|
||||
<a name="2.2与手机联调"></a>
|
||||
### 2.2 与手机联调
|
||||
|
||||
|
@ -167,7 +185,7 @@ paddle_lite_opt --model_file=./MobileNetV3_large_x1_0_infer/inference.pdmodel --
|
|||
|
||||
win上安装需要去谷歌的安卓平台下载ADB软件包进行安装:[链接](https://developer.android.com/studio)
|
||||
|
||||
4. 手机连接电脑后,开启手机`USB调试`选项,选择`文件传输`模式,在电脑终端中输入:
|
||||
3. 手机连接电脑后,开启手机`USB调试`选项,选择`文件传输`模式,在电脑终端中输入:
|
||||
|
||||
```shell
|
||||
adb devices
|
||||
|
@ -178,40 +196,18 @@ List of devices attached
|
|||
744be294 device
|
||||
```
|
||||
|
||||
5. 准备优化后的模型、预测库文件、测试图像和类别映射文件。
|
||||
|
||||
4. 将优化后的模型、预测库文件、测试图像和类别映射文件push到手机上。
|
||||
|
||||
```shell
|
||||
cd PaddleClas_root_path
|
||||
cd deploy/lite/
|
||||
|
||||
# 运行prepare.sh
|
||||
# prepare.sh 会将预测库文件、测试图像和使用的字典文件放置在预测库中的demo/cxx/clas文件夹下
|
||||
sh prepare.sh /{lite prediction library path}/inference_lite_lib.android.armv8
|
||||
|
||||
# 进入lite demo的工作目录
|
||||
cd /{lite prediction library path}/inference_lite_lib.android.armv8/
|
||||
cd demo/cxx/clas/
|
||||
|
||||
# 将C++预测动态库so文件复制到debug文件夹中
|
||||
cp ../../../cxx/lib/libpaddle_light_api_shared.so ./debug/
|
||||
```
|
||||
|
||||
`prepare.sh` 以 `PaddleClas/deploy/lite/imgs/tabby_cat.jpg` 作为测试图像,将测试图像复制到`demo/cxx/clas/debug/` 文件夹下。
|
||||
将 `paddle_lite_opt` 工具优化后的模型文件放置到 `/{lite prediction library path}/inference_lite_lib.android.armv8/demo/cxx/clas/debug/` 文件夹下。本例中,使用[2.1.3](#2.1.3)生成的 `MobileNetV3_large_x1_0.nb` 模型文件。
|
||||
|
||||
执行完成后,clas文件夹下将有如下文件格式:
|
||||
|
||||
```
|
||||
demo/cxx/clas/
|
||||
|-- debug/
|
||||
| |--MobileNetV3_large_x1_0.nb 优化后的分类器模型文件
|
||||
| |--tabby_cat.jpg 待测试图像
|
||||
| |--imagenet1k_label_list.txt 类别映射文件
|
||||
| |--libpaddle_light_api_shared.so C++预测库文件
|
||||
| |--config.txt 分类预测超参数配置
|
||||
|-- config.txt 分类预测超参数配置
|
||||
|-- image_classfication.cpp 图像分类代码文件
|
||||
|-- Makefile 编译文件
|
||||
adb shell mkdir -p /data/local/tmp/arm_cpu/
|
||||
adb push clas_system /data/local/tmp/arm_cpu/
|
||||
adb shell chmod +x /data/local/tmp/arm_cpu//clas_system
|
||||
adb push inference_lite_lib.android.armv8.clang.c++_static.with_extra.with_cv/cxx/lib/libpaddle_light_api_shared.so /data/local/tmp/arm_cpu/
|
||||
adb push MobileNetV3_large_x1_0.nb /data/local/tmp/arm_cpu/
|
||||
adb push config.txt /data/local/tmp/arm_cpu/
|
||||
adb push ../../ppcls/utils/imagenet1k_label_list.txt /data/local/tmp/arm_cpu/
|
||||
adb push imgs/tabby_cat.jpg /data/local/tmp/arm_cpu/
|
||||
```
|
||||
|
||||
#### 注意:
|
||||
|
@ -224,32 +220,22 @@ clas_model_file ./MobileNetV3_large_x1_0.nb # 模型文件地址
|
|||
label_path ./imagenet1k_label_list.txt # 类别映射文本文件
|
||||
resize_short_size 256 # resize之后的短边边长
|
||||
crop_size 224 # 裁剪后用于预测的边长
|
||||
visualize 0 # 是否进行可视化,如果选择的话,会在当前文件夹下生成名为clas_result.png的图像文件。
|
||||
visualize 0 # 是否进行可视化,如果选择的话,会在当前文件夹下生成名为clas_result.png的图像文件
|
||||
num_threads 1 # 线程数,默认是1。
|
||||
precision FP32 # 精度类型,可以选择 FP32 或者 INT8,默认是 FP32。
|
||||
runtime_device arm_cpu # 设备类型,默认是 arm_cpu
|
||||
enable_benchmark 0 # 是否开启benchmark, 默认是 0
|
||||
tipc_benchmark 0 # 是否开启tipc_benchmark,默认是 0
|
||||
```
|
||||
|
||||
5. 启动调试,上述步骤完成后就可以使用ADB将文件夹 `debug/` push到手机上运行,步骤如下:
|
||||
5. 执行预测命令
|
||||
|
||||
执行以下命令,可完成在手机上的预测。
|
||||
|
||||
```shell
|
||||
# 执行编译,得到可执行文件clas_system
|
||||
make -j
|
||||
|
||||
# 将编译得到的可执行文件移动到debug文件夹中
|
||||
mv clas_system ./debug/
|
||||
|
||||
# 将上述debug文件夹push到手机上
|
||||
adb push debug /data/local/tmp/
|
||||
|
||||
adb shell
|
||||
cd /data/local/tmp/debug
|
||||
export LD_LIBRARY_PATH=/data/local/tmp/debug:$LD_LIBRARY_PATH
|
||||
|
||||
# clas_system可执行文件的使用方式为:
|
||||
# ./clas_system 配置文件路径 测试图像路径
|
||||
./clas_system ./config.txt ./tabby_cat.jpg
|
||||
adb shell 'export LD_LIBRARY_PATH=/data/local/tmp/arm_cpu/; /data/local/tmp/arm_cpu/clas_system /data/local/tmp/arm_cpu/config.txt /data/local/tmp/arm_cpu/tabby_cat.jpg'
|
||||
```
|
||||
|
||||
如果对代码做了修改,则需要重新编译并push到手机上。
|
||||
|
||||
运行效果如下:
|
||||
|
||||
<div align="center">
|
||||
|
@ -263,3 +249,4 @@ A1:如果已经走通了上述步骤,更换模型只需要替换 `.nb` 模
|
|||
|
||||
Q2:换一个图测试怎么做?
|
||||
A2:替换 debug 下的测试图像为你想要测试的图像,使用 ADB 再次 push 到手机上即可。
|
||||
|
||||
|
|
|
@ -1,11 +1,8 @@
|
|||
# PaddleLite 推理部署
|
||||
---
|
||||
# 端侧部署
|
||||
|
||||
本教程将介绍基于[Paddle Lite](https://github.com/PaddlePaddle/Paddle-Lite)在移动端部署 PaddleClas 分类模型的详细步骤。识别模型的部署将在近期支持,敬请期待。
|
||||
本教程将介绍基于[Paddle Lite](https://github.com/PaddlePaddle/Paddle-Lite) 在移动端部署PaddleClas分类模型的详细步骤。
|
||||
|
||||
Paddle Lite 是飞桨轻量化推理引擎,为手机、IOT 端提供高效推理能力,并广泛整合跨平台硬件,为端侧部署及应用落地问题提供轻量化的部署方案。
|
||||
|
||||
如果希望直接测试速度,可以参考[Paddle-Lite 移动端 benchmark 测试教程](../others/paddle_mobile_inference.md)。
|
||||
Paddle Lite是飞桨轻量化推理引擎,为手机、IOT端提供高效推理能力,并广泛整合跨平台硬件,为端侧部署及应用落地问题提供轻量化的部署方案。如果希望直接测试速度,可以参考[Paddle-Lite移动端benchmark测试教程](../../docs/zh_CN/extension/paddle_mobile_inference.md)。
|
||||
|
||||
---
|
||||
|
||||
|
@ -18,53 +15,54 @@ Paddle Lite 是飞桨轻量化推理引擎,为手机、IOT 端提供高效推
|
|||
- [2.1.1 pip 安装 paddlelite 并进行转换](#2.1.1)
|
||||
- [2.1.2 源码编译 Paddle-Lite 生成 opt 工具](#2.1.2)
|
||||
- [2.1.3 转换示例](#2.1.3)
|
||||
- [2.1.4 执行编译,得到可执行文件clas_system](#2.1.4)
|
||||
- [2.2 与手机联调](#2.2)
|
||||
- [3. FAQ](#3)
|
||||
|
||||
<a name="1"></a>
|
||||
## 1. 准备环境
|
||||
|
||||
Paddle Lite 目前支持以下平台部署:
|
||||
* 电脑(编译 Paddle Lite)
|
||||
* 安卓手机(armv7 或 armv8)
|
||||
### 运行准备
|
||||
- 电脑(编译Paddle Lite)
|
||||
- 安卓手机(armv7或armv8)
|
||||
|
||||
<a name="1.1"></a>
|
||||
### 1.1 准备交叉编译环境
|
||||
交叉编译环境用于编译 Paddle Lite 和 PaddleClas 的C++ demo。
|
||||
支持多种开发环境,不同开发环境的编译流程请参考对应文档。
|
||||
|
||||
交叉编译环境用于编译 Paddle Lite 和 PaddleClas 的 C++ demo。
|
||||
支持多种开发环境,关于 Docker、Linux、macOS、Windows 等不同开发环境的编译流程请参考[文档](https://paddle-lite.readthedocs.io/zh/latest/source_compile/compile_env.html)。
|
||||
1. [Docker](https://paddle-lite.readthedocs.io/zh/latest/source_compile/compile_env.html#docker)
|
||||
2. [Linux](https://paddle-lite.readthedocs.io/zh/latest/source_compile/compile_env.html#linux)
|
||||
3. [MAC OS](https://paddle-lite.readthedocs.io/zh/latest/source_compile/compile_env.html#mac-os)
|
||||
|
||||
<a name="1.2"></a>
|
||||
### 1.2 准备预测库
|
||||
|
||||
预测库有两种获取方式:
|
||||
1. [建议]直接下载,预测库下载链接如下:
|
||||
|平台|预测库下载链接|
|
||||
|-|-|
|
||||
|Android|[arm7](https://paddlelite-data.bj.bcebos.com/Release/2.8-rc/Android/gcc/inference_lite_lib.android.armv7.gcc.c++_static.with_extra.with_cv.tar.gz) / [arm8](https://paddlelite-data.bj.bcebos.com/Release/2.8-rc/Android/gcc/inference_lite_lib.android.armv8.gcc.c++_static.with_extra.with_cv.tar.gz)|
|
||||
|iOS|[arm7](https://paddlelite-data.bj.bcebos.com/Release/2.8-rc/iOS/inference_lite_lib.ios.armv7.with_cv.with_extra.tiny_publish.tar.gz) / [arm8](https://paddlelite-data.bj.bcebos.com/Release/2.8-rc/iOS/inference_lite_lib.ios.armv8.with_cv.with_extra.tiny_publish.tar.gz)|
|
||||
|Android|[arm7](https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.10/inference_lite_lib.android.armv7.clang.c++_static.with_extra.with_cv.tar.gz) / [arm8](https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.10/inference_lite_lib.android.armv8.clang.c++_static.with_extra.with_cv.tar.gz)|
|
||||
|iOS|[arm7](https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.10/inference_lite_lib.ios.armv7.with_cv.with_extra.tiny_publish.tar.gz) / [arm8](https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.10/inference_lite_lib.ios.armv8.with_cv.with_extra.tiny_publish.tar.gz)|
|
||||
|
||||
**注**:
|
||||
1. 如果是从 Paddle-Lite [官方文档](https://paddle-lite.readthedocs.io/zh/latest/quick_start/release_lib.html#android-toolchain-gcc)下载的预测库,
|
||||
注意选择 `with_extra=ON,with_cv=ON` 的下载链接。
|
||||
2. 如果使用量化的模型部署在端侧,建议使用 Paddle-Lite develop 分支编译预测库。
|
||||
|
||||
2. 编译 Paddle-Lite 得到预测库,Paddle-Lite 的编译方式如下:
|
||||
注意选择`with_extra=ON,with_cv=ON`的下载链接。
|
||||
2. 如果使用量化的模型部署在端侧,建议使用Paddle-Lite develop分支编译预测库。
|
||||
|
||||
2. 编译Paddle-Lite得到预测库,Paddle-Lite的编译方式如下:
|
||||
```shell
|
||||
git clone https://github.com/PaddlePaddle/Paddle-Lite.git
|
||||
cd Paddle-Lite
|
||||
# 如果使用编译方式,建议使用 develop 分支编译预测库
|
||||
# 如果使用编译方式,建议使用develop分支编译预测库
|
||||
git checkout develop
|
||||
./lite/tools/build_android.sh --arch=armv8 --with_cv=ON --with_extra=ON
|
||||
```
|
||||
**注意**:编译 Paddle-Lite 获得预测库时,需要打开`--with_cv=ON --with_extra=ON` 两个选项,`--arch` 表示 `arm` 版本,这里指定为 armv8,更多编译命令介绍请参考[Linux x86 环境下编译适用于 Android 的库](https://paddle-lite.readthedocs.io/zh/latest/source_compile/linux_x86_compile_android.html),关于其他平台的编译操作,具体请参考[PaddleLite](https://paddle-lite.readthedocs.io/zh/latest/)中`源码编译`部分。
|
||||
|
||||
直接下载预测库并解压后,可以得到 `inference_lite_lib.android.armv8/`文件夹,通过编译 Paddle-Lite 得到的预测库位于 `Paddle-Lite/build.lite.android.armv8.gcc/inference_lite_lib.android.armv8/`文件夹下。
|
||||
**注意**:编译Paddle-Lite获得预测库时,需要打开`--with_cv=ON --with_extra=ON`两个选项,`--arch`表示`arm`版本,这里指定为armv8,更多编译命令介绍请参考[链接](https://paddle-lite.readthedocs.io/zh/latest/user_guides/Compile/Android.html#id2)。
|
||||
|
||||
直接下载预测库并解压后,可以得到`inference_lite_lib.android.armv8.clang.c++_static.with_extra.with_cv/`文件夹,通过编译Paddle-Lite得到的预测库位于`Paddle-Lite/build.lite.android.armv8.gcc/inference_lite_lib.android.armv8/`文件夹下。
|
||||
预测库的文件目录如下:
|
||||
|
||||
```
|
||||
inference_lite_lib.android.armv8/
|
||||
inference_lite_lib.android.armv8.clang.c++_static.with_extra.with_cv/
|
||||
|-- cxx C++ 预测库和头文件
|
||||
| |-- include C++ 头文件
|
||||
| | |-- paddle_api.h
|
||||
|
@ -77,7 +75,7 @@ inference_lite_lib.android.armv8/
|
|||
| `-- lib C++预测库
|
||||
| |-- libpaddle_api_light_bundled.a C++静态库
|
||||
| `-- libpaddle_light_api_shared.so C++动态库
|
||||
|-- java Java 预测库
|
||||
|-- java Java预测库
|
||||
| |-- jar
|
||||
| | `-- PaddlePredictor.jar
|
||||
| |-- so
|
||||
|
@ -88,47 +86,43 @@ inference_lite_lib.android.armv8/
|
|||
| `-- java Java 预测库demo
|
||||
```
|
||||
|
||||
<a name="2"></a>
|
||||
## 2. 开始运行
|
||||
## 2 开始运行
|
||||
|
||||
<a name="2.1"></a>
|
||||
### 2.1 模型优化
|
||||
|
||||
Paddle-Lite 提供了多种策略来自动优化原始的模型,其中包括量化、子图融合、混合精度、Kernel 优选等方法,使用 Paddle-Lite 的 `opt` 工具可以自动对 inference 模型进行优化,目前支持两种优化方式,优化后的模型更轻量,模型运行速度更快。在进行模型优化前,需要先准备 `opt` 优化工具,有以下两种方式。
|
||||
Paddle-Lite 提供了多种策略来自动优化原始的模型,其中包括量化、子图融合、混合调度、Kernel优选等方法,使用Paddle-Lite的`opt`工具可以自动对inference模型进行优化,目前支持两种优化方式,优化后的模型更轻量,模型运行速度更快。
|
||||
|
||||
**注意**:如果已经准备好了 `.nb` 结尾的模型文件,可以跳过此步骤。
|
||||
|
||||
<a name="2.1.1"></a>
|
||||
#### 2.1.1 [建议]pip 安装 paddlelite 并进行转换
|
||||
#### 2.1.1 [建议]pip安装paddlelite并进行转换
|
||||
|
||||
Python 下安装 `paddlelite`,目前最高支持 `Python3.7`。
|
||||
**注意**:`paddlelite` whl 包版本必须和预测库版本对应。
|
||||
Python下安装 `paddlelite`,目前最高支持`Python3.7`。
|
||||
**注意**:`paddlelite`whl包版本必须和预测库版本对应。
|
||||
|
||||
```shell
|
||||
pip install paddlelite==2.8
|
||||
pip install paddlelite==2.10
|
||||
```
|
||||
|
||||
之后使用 `paddle_lite_opt` 工具可以进行 inference 模型的转换。`paddle_lite_opt` 的部分参数如下
|
||||
之后使用`paddle_lite_opt`工具可以进行inference模型的转换。`paddle_lite_opt`的部分参数如下
|
||||
|
||||
|选项|说明|
|
||||
|-|-|
|
||||
|--model_dir|待优化的 PaddlePaddle 模型(非 combined 形式)的路径|
|
||||
|--model_file|待优化的 PaddlePaddle 模型(combined 形式)的网络结构文件路径|
|
||||
|--param_file|待优化的 PaddlePaddle 模型(combined 形式)的权重文件路径|
|
||||
|--optimize_out_type|输出模型类型,目前支持两种类型:protobuf 和 naive_buffer,其中 naive_buffer 是一种更轻量级的序列化/反序列化实现。若您需要在 mobile 端执行模型预测,请将此选项设置为 naive_buffer。默认为 protobuf|
|
||||
|--model_dir|待优化的PaddlePaddle模型(非combined形式)的路径|
|
||||
|--model_file|待优化的PaddlePaddle模型(combined形式)的网络结构文件路径|
|
||||
|--param_file|待优化的PaddlePaddle模型(combined形式)的权重文件路径|
|
||||
|--optimize_out_type|输出模型类型,目前支持两种类型:protobuf和naive_buffer,其中naive_buffer是一种更轻量级的序列化/反序列化实现。若您需要在mobile端执行模型预测,请将此选项设置为naive_buffer。默认为protobuf|
|
||||
|--optimize_out|优化模型的输出路径|
|
||||
|--valid_targets|指定模型可执行的 backend,默认为 arm。目前可支持 x86、arm、opencl、npu、xpu,可以同时指定多个 backend(以空格分隔),Model Optimize Tool 将会自动选择最佳方式。如果需要支持华为 NPU(Kirin 810/990 Soc 搭载的达芬奇架构 NPU),应当设置为 npu, arm|
|
||||
|--record_tailoring_info|当使用 根据模型裁剪库文件 功能时,则设置该选项为 true,以记录优化后模型含有的 kernel 和 OP 信息,默认为 false|
|
||||
|--valid_targets|指定模型可执行的backend,默认为arm。目前可支持x86、arm、opencl、npu、xpu,可以同时指定多个backend(以空格分隔),Model Optimize Tool将会自动选择最佳方式。如果需要支持华为NPU(Kirin 810/990 Soc搭载的达芬奇架构NPU),应当设置为npu, arm|
|
||||
|--record_tailoring_info|当使用 根据模型裁剪库文件 功能时,则设置该选项为true,以记录优化后模型含有的kernel和OP信息,默认为false|
|
||||
|
||||
`--model_file` 表示 inference 模型的 model 文件地址,`--param_file` 表示 inference 模型的 param 文件地址;`optimize_out` 用于指定输出文件的名称(不需要添加 `.nb` 的后缀)。直接在命令行中运行 `paddle_lite_opt`,也可以查看所有参数及其说明。
|
||||
`--model_file`表示inference模型的model文件地址,`--param_file`表示inference模型的param文件地址;`optimize_out`用于指定输出文件的名称(不需要添加`.nb`的后缀)。直接在命令行中运行`paddle_lite_opt`,也可以查看所有参数及其说明。
|
||||
|
||||
<a name="2.1.2"></a>
|
||||
#### 2.1.2 源码编译 Paddle-Lite 生成 opt 工具
|
||||
|
||||
模型优化需要 Paddle-Lite 的 `opt` 可执行文件,可以通过编译 Paddle-Lite 源码获得,编译步骤如下:
|
||||
#### 2.1.2 源码编译Paddle-Lite生成opt工具
|
||||
|
||||
模型优化需要Paddle-Lite的`opt`可执行文件,可以通过编译Paddle-Lite源码获得,编译步骤如下:
|
||||
```shell
|
||||
# 如果准备环境时已经 clone 了 Paddle-Lite,则不用重新 clone Paddle-Lite
|
||||
# 如果准备环境时已经clone了Paddle-Lite,则不用重新clone Paddle-Lite
|
||||
git clone https://github.com/PaddlePaddle/Paddle-Lite.git
|
||||
cd Paddle-Lite
|
||||
git checkout develop
|
||||
|
@ -136,146 +130,137 @@ git checkout develop
|
|||
./lite/tools/build.sh build_optimize_tool
|
||||
```
|
||||
|
||||
编译完成后,`opt` 文件位于 `build.opt/lite/api/` 下,可通过如下方式查看 `opt` 的运行选项和使用方式:
|
||||
|
||||
编译完成后,`opt`文件位于`build.opt/lite/api/`下,可通过如下方式查看`opt`的运行选项和使用方式;
|
||||
```shell
|
||||
cd build.opt/lite/api/
|
||||
./opt
|
||||
```
|
||||
|
||||
`opt` 的使用方式与参数与上面的 `paddle_lite_opt` 完全一致。
|
||||
`opt`的使用方式与参数与上面的`paddle_lite_opt`完全一致。
|
||||
|
||||
<a name="2.1.3"></a>
|
||||
|
||||
#### 2.1.3 转换示例
|
||||
|
||||
下面以 PaddleClas 的 `MobileNetV3_large_x1_0` 模型为例,介绍使用 `paddle_lite_opt` 完成预训练模型到 inference 模型,再到 Paddle-Lite 优化模型的转换。
|
||||
下面以PaddleClas的 `MobileNetV3_large_x1_0` 模型为例,介绍使用`paddle_lite_opt`完成预训练模型到inference模型,再到Paddle-Lite优化模型的转换。
|
||||
|
||||
```shell
|
||||
# 进入 PaddleClas 根目录
|
||||
# 进入PaddleClas根目录
|
||||
cd PaddleClas_root_path
|
||||
|
||||
# 下载并解压 inference 模型
|
||||
# 下载并解压inference模型
|
||||
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/MobileNetV3_large_x1_0_infer.tar
|
||||
tar -xf MobileNetV3_large_x1_0_infer.tar
|
||||
|
||||
# 将 inference 模型转化为 Paddle-Lite 优化模型
|
||||
# 将inference模型转化为Paddle-Lite优化模型
|
||||
paddle_lite_opt --model_file=./MobileNetV3_large_x1_0_infer/inference.pdmodel --param_file=./MobileNetV3_large_x1_0_infer/inference.pdiparams --optimize_out=./MobileNetV3_large_x1_0
|
||||
```
|
||||
|
||||
最终在当前文件夹下生成 `MobileNetV3_large_x1_0.nb` 的文件。
|
||||
最终在当前文件夹下生成`MobileNetV3_large_x1_0.nb`的文件。
|
||||
|
||||
**注意**:`--optimize_out` 参数为优化后模型的保存路径,无需加后缀 `.nb`;`--model_file` 参数为模型结构信息文件的路径,`--param_file` 参数为模型权重信息文件的路径,请注意文件名。
|
||||
**注意**:`--optimize_out` 参数为优化后模型的保存路径,无需加后缀`.nb`;`--model_file` 参数为模型结构信息文件的路径,`--param_file` 参数为模型权重信息文件的路径,请注意文件名。
|
||||
|
||||
<a name="2.2"></a>
|
||||
<a name="2.1.4"></a>
|
||||
|
||||
#### 2.1.4 执行编译,得到可执行文件clas_system
|
||||
|
||||
```shell
|
||||
# 克隆 Autolog 代码库,以便获取自动化日志
|
||||
cd PaddleClas_root_path
|
||||
cd deploy/lite/
|
||||
git clone https://github.com/LDOUBLEV/AutoLog.git
|
||||
```
|
||||
|
||||
```shell
|
||||
# 克隆 Autolog 代码库,以便获取自动化日志
|
||||
make -j
|
||||
```
|
||||
|
||||
执行 `make` 命令后,会在当前目录生成 `clas_system` 可执行文件,该文件用于 Lite 预测。
|
||||
|
||||
<a name="2.2与手机联调"></a>
|
||||
### 2.2 与手机联调
|
||||
|
||||
首先需要进行一些准备工作。
|
||||
1. 准备一台 arm8 的安卓手机,如果编译的预测库和 opt 文件是 armv7,则需要 arm7 的手机,并修改 Makefile 中 `ARM_ABI = arm7`。
|
||||
2. 电脑上安装 ADB 工具,用于调试。 ADB 安装方式如下:
|
||||
1. 准备一台arm8的安卓手机,如果编译的预测库和opt文件是armv7,则需要arm7的手机,并修改Makefile中`ARM_ABI = arm7`。
|
||||
2. 电脑上安装ADB工具,用于调试。 ADB安装方式如下:
|
||||
|
||||
3.1. MAC电脑安装ADB:
|
||||
|
||||
* MAC 电脑安装 ADB:
|
||||
```shell
|
||||
brew cask install android-platform-tools
|
||||
```
|
||||
* Linux 安装 ADB
|
||||
3.2. Linux安装ADB
|
||||
```shell
|
||||
sudo apt update
|
||||
sudo apt install -y wget adb
|
||||
```
|
||||
* Window 安装 ADB
|
||||
win 上安装需要去谷歌的安卓平台下载 ADB 软件包进行安装:[链接](https://developer.android.com/studio)
|
||||
3.3. Window安装ADB
|
||||
|
||||
3. 手机连接电脑后,开启手机 `USB 调试` 选项,选择 `文件传输` 模式,在电脑终端中输入:
|
||||
win上安装需要去谷歌的安卓平台下载ADB软件包进行安装:[链接](https://developer.android.com/studio)
|
||||
|
||||
3. 手机连接电脑后,开启手机`USB调试`选项,选择`文件传输`模式,在电脑终端中输入:
|
||||
|
||||
```shell
|
||||
adb devices
|
||||
```
|
||||
如果有 device 输出,则表示安装成功,如下所示:
|
||||
如果有device输出,则表示安装成功,如下所示:
|
||||
```
|
||||
List of devices attached
|
||||
744be294 device
|
||||
```
|
||||
|
||||
4. 准备优化后的模型、预测库文件、测试图像和类别映射文件。
|
||||
|
||||
4. 将优化后的模型、预测库文件、测试图像和类别映射文件push到手机上。
|
||||
|
||||
```shell
|
||||
cd PaddleClas_root_path
|
||||
cd deploy/lite/
|
||||
|
||||
# 运行 prepare.sh
|
||||
# prepare.sh 会将预测库文件、测试图像和使用的字典文件放置在预测库中的 demo/cxx/clas 文件夹下
|
||||
sh prepare.sh /{lite prediction library path}/inference_lite_lib.android.armv8
|
||||
|
||||
# 进入 lite demo 的工作目录
|
||||
cd /{lite prediction library path}/inference_lite_lib.android.armv8/
|
||||
cd demo/cxx/clas/
|
||||
|
||||
# 将 C++ 预测动态库 so 文件复制到 debug 文件夹中
|
||||
cp ../../../cxx/lib/libpaddle_light_api_shared.so ./debug/
|
||||
```
|
||||
|
||||
`prepare.sh` 以 `PaddleClas/deploy/lite/imgs/tabby_cat.jpg` 作为测试图像,将测试图像复制到 `demo/cxx/clas/debug/` 文件夹下。
|
||||
将 `paddle_lite_opt` 工具优化后的模型文件放置到 `/{lite prediction library path}/inference_lite_lib.android.armv8/demo/cxx/clas/debug/` 文件夹下。本例中,使用 [2.1.3 转换示例](#2.1.3) 生成的 `MobileNetV3_large_x1_0.nb` 模型文件。
|
||||
|
||||
执行完成后,clas 文件夹下将有如下文件格式:
|
||||
|
||||
```
|
||||
demo/cxx/clas/
|
||||
|-- debug/
|
||||
| |--MobileNetV3_large_x1_0.nb 优化后的分类器模型文件
|
||||
| |--tabby_cat.jpg 待测试图像
|
||||
| |--imagenet1k_label_list.txt 类别映射文件
|
||||
| |--libpaddle_light_api_shared.so C++预测库文件
|
||||
| |--config.txt 分类预测超参数配置
|
||||
|-- config.txt 分类预测超参数配置
|
||||
|-- image_classfication.cpp 图像分类代码文件
|
||||
|-- Makefile 编译文件
|
||||
adb shell mkdir -p /data/local/tmp/arm_cpu/
|
||||
adb push clas_system /data/local/tmp/arm_cpu/
|
||||
adb shell chmod +x /data/local/tmp/arm_cpu//clas_system
|
||||
adb push inference_lite_lib.android.armv8.clang.c++_static.with_extra.with_cv/cxx/lib/libpaddle_light_api_shared.so /data/local/tmp/arm_cpu/
|
||||
adb push MobileNetV3_large_x1_0.nb /data/local/tmp/arm_cpu/
|
||||
adb push config.txt /data/local/tmp/arm_cpu/
|
||||
adb push ../../ppcls/utils/imagenet1k_label_list.txt /data/local/tmp/arm_cpu/
|
||||
adb push imgs/tabby_cat.jpg /data/local/tmp/arm_cpu/
|
||||
```
|
||||
|
||||
#### 注意:
|
||||
* 上述文件中,`imagenet1k_label_list.txt` 是 ImageNet1k 数据集的类别映射文件,如果使用自定义的类别,需要更换该类别映射文件。
|
||||
* 上述文件中,`imagenet1k_label_list.txt` 是ImageNet1k数据集的类别映射文件,如果使用自定义的类别,需要更换该类别映射文件。
|
||||
|
||||
* `config.txt` 包含了分类器的超参数,如下:
|
||||
* `config.txt` 包含了分类器的超参数,如下:
|
||||
|
||||
```shell
|
||||
clas_model_file ./MobileNetV3_large_x1_0.nb # 模型文件地址
|
||||
label_path ./imagenet1k_label_list.txt # 类别映射文本文件
|
||||
resize_short_size 256 # resize 之后的短边边长
|
||||
crop_size 224 # 裁剪后用于预测的边长
|
||||
visualize 0 # 是否进行可视化,如果选择的话,会在当前文件夹下生成名为 clas_result.png 的图像文件。
|
||||
label_path ./imagenet1k_label_list.txt # 类别映射文本文件
|
||||
resize_short_size 256 # resize之后的短边边长
|
||||
crop_size 224 # 裁剪后用于预测的边长
|
||||
visualize 0 # 是否进行可视化,如果选择的话,会在当前文件夹下生成名为clas_result.png的图像文件
|
||||
num_threads 1 # 线程数,默认是1。
|
||||
precision FP32 # 精度类型,可以选择 FP32 或者 INT8,默认是 FP32。
|
||||
runtime_device arm_cpu # 设备类型,默认是 arm_cpu
|
||||
enable_benchmark 0 # 是否开启benchmark, 默认是 0
|
||||
tipc_benchmark 0 # 是否开启tipc_benchmark,默认是 0
|
||||
```
|
||||
|
||||
5. 启动调试,上述步骤完成后就可以使用 ADB 将文件夹 `debug/` push 到手机上运行,步骤如下:
|
||||
5. 执行预测命令
|
||||
|
||||
执行以下命令,可完成在手机上的预测。
|
||||
|
||||
```shell
|
||||
# 执行编译,得到可执行文件 clas_system
|
||||
make -j
|
||||
|
||||
# 将编译得到的可执行文件移动到 debug 文件夹中
|
||||
mv clas_system ./debug/
|
||||
|
||||
# 将上述 debug 文件夹 push 到手机上
|
||||
adb push debug /data/local/tmp/
|
||||
|
||||
adb shell
|
||||
cd /data/local/tmp/debug
|
||||
export LD_LIBRARY_PATH=/data/local/tmp/debug:$LD_LIBRARY_PATH
|
||||
|
||||
# clas_system 可执行文件的使用方式为:
|
||||
# ./clas_system 配置文件路径 测试图像路径
|
||||
./clas_system ./config.txt ./tabby_cat.jpg
|
||||
adb shell 'export LD_LIBRARY_PATH=/data/local/tmp/arm_cpu/; /data/local/tmp/arm_cpu/clas_system /data/local/tmp/arm_cpu/config.txt /data/local/tmp/arm_cpu/tabby_cat.jpg'
|
||||
```
|
||||
|
||||
如果对代码做了修改,则需要重新编译并 push 到手机上。
|
||||
|
||||
运行效果如下:
|
||||
|
||||

|
||||
<div align="center">
|
||||
<img src="./imgs/lite_demo_result.png" width="600">
|
||||
</div>
|
||||
|
||||
<a name="3"></a>
|
||||
## 3. FAQ
|
||||
|
||||
## FAQ
|
||||
Q1:如果想更换模型怎么办,需要重新按照流程走一遍吗?
|
||||
A1:如果已经走通了上述步骤,更换模型只需要替换 `.nb` 模型文件即可,同时要注意修改下配置文件中的 `.nb` 文件路径以及类别映射文件(如有必要)。
|
||||
|
||||
Q2:换一个图测试怎么做?
|
||||
A2:替换 debug 下的测试图像为你想要测试的图像,使用 ADB 再次 push 到手机上即可。
|
||||
|
||||
|
|
|
@ -16,6 +16,14 @@ function func_parser_value(){
|
|||
echo ${tmp}
|
||||
}
|
||||
|
||||
function func_parser_value_lite(){
|
||||
strs=$1
|
||||
IFS=$2
|
||||
array=(${strs})
|
||||
tmp=${array[1]}
|
||||
echo ${tmp}
|
||||
}
|
||||
|
||||
function func_set_params(){
|
||||
key=$1
|
||||
value=$2
|
||||
|
|
|
@ -0,0 +1,8 @@
|
|||
runtime_device:arm_cpu
|
||||
lite_arm_work_path:/data/local/tmp/arm_cpu/
|
||||
lite_arm_so_path:inference_lite_lib.android.armv8/cxx/lib/libpaddle_light_api_shared.so
|
||||
clas_model_file:MobileNetV3_large_x1_0
|
||||
inference_cmd:clas_system config.txt tabby_cat.jpg
|
||||
--num_threads_list:1
|
||||
--batch_size_list:1
|
||||
--precision_list:FP32
|
|
@ -0,0 +1,8 @@
|
|||
runtime_device:arm_cpu
|
||||
lite_arm_work_path:/data/local/tmp/arm_cpu/
|
||||
lite_arm_so_path:inference_lite_lib.android.armv8/cxx/lib/libpaddle_light_api_shared.so
|
||||
clas_model_file:MobileNetV3_large_x1_0
|
||||
inference_cmd:clas_system config.txt tabby_cat.jpg
|
||||
--num_threads_list:1
|
||||
--batch_size_list:1
|
||||
--precision_list:FP32
|
|
@ -0,0 +1,8 @@
|
|||
runtime_device:arm_cpu
|
||||
lite_arm_work_path:/data/local/tmp/arm_cpu/
|
||||
lite_arm_so_path:inference_lite_lib.android.armv8/cxx/lib/libpaddle_light_api_shared.so
|
||||
clas_model_file:PPLCNet_x0_25
|
||||
inference_cmd:clas_system config.txt tabby_cat.jpg
|
||||
--num_threads_list:1
|
||||
--batch_size_list:1
|
||||
--precision_list:FP32
|
|
@ -0,0 +1,8 @@
|
|||
runtime_device:arm_cpu
|
||||
lite_arm_work_path:/data/local/tmp/arm_cpu/
|
||||
lite_arm_so_path:inference_lite_lib.android.armv8/cxx/lib/libpaddle_light_api_shared.so
|
||||
clas_model_file:PPLCNet_x0_5
|
||||
inference_cmd:clas_system config.txt tabby_cat.jpg
|
||||
--num_threads_list:1
|
||||
--batch_size_list:1
|
||||
--precision_list:FP32
|
|
@ -0,0 +1,8 @@
|
|||
runtime_device:arm_cpu
|
||||
lite_arm_work_path:/data/local/tmp/arm_cpu/
|
||||
lite_arm_so_path:inference_lite_lib.android.armv8/cxx/lib/libpaddle_light_api_shared.so
|
||||
clas_model_file:PPLCNet_x0_75
|
||||
inference_cmd:clas_system config.txt tabby_cat.jpg
|
||||
--num_threads_list:1
|
||||
--batch_size_list:1
|
||||
--precision_list:FP32
|
|
@ -0,0 +1,8 @@
|
|||
runtime_device:arm_cpu
|
||||
lite_arm_work_path:/data/local/tmp/arm_cpu/
|
||||
lite_arm_so_path:inference_lite_lib.android.armv8/cxx/lib/libpaddle_light_api_shared.so
|
||||
clas_model_file:PPLCNet_x1_0
|
||||
inference_cmd:clas_system config.txt tabby_cat.jpg
|
||||
--num_threads_list:1
|
||||
--batch_size_list:1
|
||||
--precision_list:FP32
|
|
@ -0,0 +1,8 @@
|
|||
runtime_device:arm_cpu
|
||||
lite_arm_work_path:/data/local/tmp/arm_cpu/
|
||||
lite_arm_so_path:inference_lite_lib.android.armv8/cxx/lib/libpaddle_light_api_shared.so
|
||||
clas_model_file:PPLCNet_x1_5
|
||||
inference_cmd:clas_system config.txt tabby_cat.jpg
|
||||
--num_threads_list:1
|
||||
--batch_size_list:1
|
||||
--precision_list:FP32
|
|
@ -0,0 +1,8 @@
|
|||
runtime_device:arm_cpu
|
||||
lite_arm_work_path:/data/local/tmp/arm_cpu/
|
||||
lite_arm_so_path:inference_lite_lib.android.armv8/cxx/lib/libpaddle_light_api_shared.so
|
||||
clas_model_file:PPLCNet_x2_0
|
||||
inference_cmd:clas_system config.txt tabby_cat.jpg
|
||||
--num_threads_list:1
|
||||
--batch_size_list:1
|
||||
--precision_list:FP32
|
|
@ -0,0 +1,8 @@
|
|||
runtime_device:arm_cpu
|
||||
lite_arm_work_path:/data/local/tmp/arm_cpu/
|
||||
lite_arm_so_path:inference_lite_lib.android.armv8/cxx/lib/libpaddle_light_api_shared.so
|
||||
clas_model_file:PPLCNet_x2_5
|
||||
inference_cmd:clas_system config.txt tabby_cat.jpg
|
||||
--num_threads_list:1
|
||||
--batch_size_list:1
|
||||
--precision_list:FP32
|
|
@ -0,0 +1,8 @@
|
|||
runtime_device:arm_cpu
|
||||
lite_arm_work_path:/data/local/tmp/arm_cpu/
|
||||
lite_arm_so_path:inference_lite_lib.android.armv8/cxx/lib/libpaddle_light_api_shared.so
|
||||
clas_model_file:ResNet50
|
||||
inference_cmd:clas_system config.txt tabby_cat.jpg
|
||||
--num_threads_list:1
|
||||
--batch_size_list:1
|
||||
--precision_list:FP32
|
|
@ -0,0 +1,8 @@
|
|||
runtime_device:arm_cpu
|
||||
lite_arm_work_path:/data/local/tmp/arm_cpu/
|
||||
lite_arm_so_path:inference_lite_lib.android.armv8/cxx/lib/libpaddle_light_api_shared.so
|
||||
clas_model_file:ResNet50_vd
|
||||
inference_cmd:clas_system config.txt tabby_cat.jpg
|
||||
--num_threads_list:1
|
||||
--batch_size_list:1
|
||||
--precision_list:FP32
|
|
@ -0,0 +1,8 @@
|
|||
runtime_device:arm_cpu
|
||||
lite_arm_work_path:/data/local/tmp/arm_cpu/
|
||||
lite_arm_so_path:inference_lite_lib.android.armv8/cxx/lib/libpaddle_light_api_shared.so
|
||||
clas_model_file:SwinTransformer_tiny_patch4_window7_224
|
||||
inference_cmd:clas_system config.txt tabby_cat.jpg
|
||||
--num_threads_list:1
|
||||
--batch_size_list:1
|
||||
--precision_list:FP32
|
|
@ -0,0 +1,44 @@
|
|||
# Lite_arm_cpp_cpu 预测功能测试
|
||||
|
||||
Lite_arm_cpp_cpu 预测功能测试的主程序为`test_lite_arm_cpu_cpp.sh`,可以测试基于 Paddle-Lite 预测库的模型推理功能。
|
||||
|
||||
## 1. 测试结论汇总
|
||||
|
||||
| 模型类型 |device | batchsize | 精度类型| 线程数 |
|
||||
| :----: | :----: | :----: | :----: | :----: |
|
||||
| 正常模型 | arm_cpu | 1 | FP32 | 1 |
|
||||
|
||||
## 2. 测试流程
|
||||
运行环境配置请参考[文档](https://github.com/PaddlePaddle/models/blob/release/2.2/tutorials/mobilenetv3_prod/Step6/deploy/lite_infer_cpp_arm_cpu/README.md) 的内容配置 TIPC Lite 的运行环境。
|
||||
|
||||
### 2.1 功能测试
|
||||
先运行 `prepare_lite_arm_cpu_cpp.sh` 准备数据和模型,然后运行 `test_lite_arm_cpu_cpp.sh` 进行测试,最终在 `./output` 目录下生成 `lite_*.log` 后缀的日志文件。
|
||||
|
||||
```shell
|
||||
bash test_tipc/prepare_lite_arm_cpu_cpp.sh test_tipc/config/MobileNetV3/MobileNetV3_large_x1_0_lite_arm_cpu_cpp.txt
|
||||
```
|
||||
|
||||
运行预测指令后,在`./output`文件夹下自动会保存运行日志,包括以下文件:
|
||||
|
||||
```shell
|
||||
test_tipc/output/
|
||||
|- results.log # 运行指令状态的日志
|
||||
|- lite_MobileNetV3_large_x1_0_runtime_device_arm_cpu_precision_FP32_batchsize_1_threads_1.log # ARM_CPU 上 FP32 状态下,线程数设置为1,测试batch_size=1条件下的预测运行日志
|
||||
......
|
||||
```
|
||||
其中results.log中包含了每条指令的运行状态,如果运行成功会输出:
|
||||
|
||||
```
|
||||
Run successfully with command - adb shell 'export LD_LIBRARY_PATH=/data/local/tmp/arm_cpu/; /data/local/tmp/arm_cpu/mobilenet_v3 /data/local/tmp/arm_cpu/config.txt /data/local/tmp/arm_cpu/demo.jpg' > ./output/lite_MobileNetV3_large_x1_0_runtime_device_arm_cpu_precision_FP32_batchsize_1_threads_1.log 2>&1!
|
||||
......
|
||||
```
|
||||
如果运行失败,会输出:
|
||||
```
|
||||
Run failed with command - adb shell 'export LD_LIBRARY_PATH=/data/local/tmp/arm_cpu/; /data/local/tmp/arm_cpu/mobilenet_v3 /data/local/tmp/arm_cpu/config.txt /data/local/tmp/arm_cpu/demo.jpg' > ./output/lite_MobileNetV3_large_x1_0_runtime_device_arm_cpu_precision_FP32_batchsize_1_threads_1.log 2>&1!
|
||||
......
|
||||
```
|
||||
可以很方便的根据results.log中的内容判定哪一个指令运行错误。
|
||||
|
||||
## 3. 更多教程
|
||||
|
||||
本文档为功能测试用,更详细的 Lite 预测使用教程请参考:[PaddleLite 推理部署](../../docs/zh_CN/inference_deployment/paddle_lite_deploy.md) 。
|
|
@ -0,0 +1,58 @@
|
|||
#!/bin/bash
|
||||
source test_tipc/common_func.sh
|
||||
|
||||
BASIC_CONFIG="./config.txt"
|
||||
CONFIG=$1
|
||||
|
||||
# parser tipc config
|
||||
IFS=$'\n'
|
||||
TIPC_CONFIG=$1
|
||||
tipc_dataline=$(cat $TIPC_CONFIG)
|
||||
tipc_lines=(${tipc_dataline})
|
||||
|
||||
runtime_device=$(func_parser_value_lite "${tipc_lines[0]}" ":")
|
||||
lite_arm_work_path=$(func_parser_value_lite "${tipc_lines[1]}" ":")
|
||||
lite_arm_so_path=$(func_parser_value_lite "${tipc_lines[2]}" ":")
|
||||
clas_model_name=$(func_parser_value_lite "${tipc_lines[3]}" ":")
|
||||
inference_cmd=$(func_parser_value_lite "${tipc_lines[4]}" ":")
|
||||
num_threads_list=$(func_parser_value_lite "${tipc_lines[5]}" ":")
|
||||
batch_size_list=$(func_parser_value_lite "${tipc_lines[6]}" ":")
|
||||
precision_list=$(func_parser_value_lite "${tipc_lines[7]}" ":")
|
||||
|
||||
|
||||
# Prepare config and test.sh
|
||||
work_path="./deploy/lite"
|
||||
cp ${CONFIG} ${work_path}
|
||||
cp test_tipc/test_lite_arm_cpu_cpp.sh ${work_path}
|
||||
|
||||
# Prepare model
|
||||
cd ${work_path}
|
||||
pip3 install paddlelite==2.10
|
||||
model_url="https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/inference/${clas_model_name}_infer.tar"
|
||||
wget --no-proxy ${model_url}
|
||||
model_tar=$(echo ${model_url} | awk -F "/" '{print $NF}')
|
||||
tar -xf ${model_tar}
|
||||
paddle_lite_opt --model_dir=${clas_model_name}_infer --model_file=${clas_model_name}_infer/inference.pdmodel --param_file=${clas_model_name}_infer/inference.pdiparams --valid_targets=arm --optimize_out=${clas_model_name}
|
||||
rm -rf ${clas_model_name}_infer*
|
||||
|
||||
# Prepare paddlelite library
|
||||
paddlelite_lib_url="https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.10/inference_lite_lib.android.armv8.clang.c++_static.with_extra.with_cv.tar.gz"
|
||||
wget ${paddlelite_lib_url}
|
||||
paddlelite_lib_file=$(echo ${paddlelite_lib_url} | awk -F "/" '{print $NF}')
|
||||
tar -xzf ${paddlelite_lib_file}
|
||||
mv ${paddlelite_lib_file%*.tar.gz} inference_lite_lib.android.armv8
|
||||
rm -rf ${paddlelite_lib_file%*.tar.gz}*
|
||||
|
||||
# Compile and obtain executable binary file
|
||||
git clone https://github.com/LDOUBLEV/AutoLog.git
|
||||
make
|
||||
|
||||
# push executable binary, library, lite model, data, etc. to arm device
|
||||
adb shell mkdir -p ${lite_arm_work_path}
|
||||
adb push $(echo ${inference_cmd} | awk '{print $1}') ${lite_arm_work_path}
|
||||
adb shell chmod +x ${lite_arm_work_path}/$(echo ${inference_cmd} | awk '{print $1}')
|
||||
adb push ${lite_arm_so_path} ${lite_arm_work_path}
|
||||
adb push ${clas_model_name}.nb ${lite_arm_work_path}
|
||||
adb push ${BASIC_CONFIG} ${lite_arm_work_path}
|
||||
adb push ../../ppcls/utils/imagenet1k_label_list.txt ${lite_arm_work_path}
|
||||
adb push imgs/$(echo ${inference_cmd} | awk '{print $3}') ${lite_arm_work_path}
|
|
@ -1,93 +0,0 @@
|
|||
#!/bin/bash
|
||||
source ./test_tipc/common_func.sh
|
||||
FILENAME=$1
|
||||
dataline=$(cat ${FILENAME})
|
||||
# parser params
|
||||
IFS=$'\n'
|
||||
lines=(${dataline})
|
||||
IFS=$'\n'
|
||||
|
||||
inference_cmd=$(func_parser_value "${lines[1]}")
|
||||
DEVICE=$(func_parser_value "${lines[2]}")
|
||||
det_lite_model_list=$(func_parser_value "${lines[3]}")
|
||||
rec_lite_model_list=$(func_parser_value "${lines[4]}")
|
||||
cls_lite_model_list=$(func_parser_value "${lines[5]}")
|
||||
|
||||
if [[ $inference_cmd =~ "det" ]];then
|
||||
lite_model_list=${det_lite_model_list}
|
||||
elif [[ $inference_cmd =~ "rec" ]];then
|
||||
lite_model_list=(${rec_lite_model_list[*]} ${cls_lite_model_list[*]})
|
||||
elif [[ $inference_cmd =~ "system" ]];then
|
||||
lite_model_list=(${det_lite_model_list[*]} ${rec_lite_model_list[*]} ${cls_lite_model_list[*]})
|
||||
else
|
||||
echo "inference_cmd is wrong, please check."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
if [ ${DEVICE} = "ARM_CPU" ];then
|
||||
valid_targets="arm"
|
||||
paddlelite_url="https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.10-rc/inference_lite_lib.android.armv8.gcc.c++_shared.with_extra.with_cv.tar.gz"
|
||||
end_index="66"
|
||||
elif [ ${DEVICE} = "ARM_GPU_OPENCL" ];then
|
||||
valid_targets="opencl"
|
||||
paddlelite_url="https://github.com/PaddlePaddle/Paddle-Lite/releases/download/v2.10-rc/inference_lite_lib.armv8.clang.with_exception.with_extra.with_cv.opencl.tar.gz"
|
||||
end_index="71"
|
||||
else
|
||||
echo "DEVICE only suport ARM_CPU, ARM_GPU_OPENCL."
|
||||
exit 2
|
||||
fi
|
||||
|
||||
# prepare lite .nb model
|
||||
pip install paddlelite==2.10-rc
|
||||
current_dir=${PWD}
|
||||
IFS="|"
|
||||
model_path=./inference_models
|
||||
|
||||
for model in ${lite_model_list[*]}; do
|
||||
if [[ $model =~ "PP-OCRv2" ]];then
|
||||
inference_model_url=https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/${model}.tar
|
||||
elif [[ $model =~ "v2.0" ]];then
|
||||
inference_model_url=https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/${model}.tar
|
||||
else
|
||||
echo "Model is wrong, please check."
|
||||
exit 3
|
||||
fi
|
||||
inference_model=${inference_model_url##*/}
|
||||
wget -nc -P ${model_path} ${inference_model_url}
|
||||
cd ${model_path} && tar -xf ${inference_model} && cd ../
|
||||
model_dir=${model_path}/${inference_model%.*}
|
||||
model_file=${model_dir}/inference.pdmodel
|
||||
param_file=${model_dir}/inference.pdiparams
|
||||
paddle_lite_opt --model_dir=${model_dir} --model_file=${model_file} --param_file=${param_file} --valid_targets=${valid_targets} --optimize_out=${model_dir}_opt
|
||||
done
|
||||
|
||||
# prepare test data
|
||||
data_url=https://paddleocr.bj.bcebos.com/dygraph_v2.0/test/icdar2015_lite.tar
|
||||
model_path=./inference_models
|
||||
inference_model=${inference_model_url##*/}
|
||||
data_file=${data_url##*/}
|
||||
wget -nc -P ./inference_models ${inference_model_url}
|
||||
wget -nc -P ./test_data ${data_url}
|
||||
cd ./inference_models && tar -xf ${inference_model} && cd ../
|
||||
cd ./test_data && tar -xf ${data_file} && rm ${data_file} && cd ../
|
||||
|
||||
# prepare lite env
|
||||
paddlelite_zipfile=$(echo $paddlelite_url | awk -F "/" '{print $NF}')
|
||||
paddlelite_file=${paddlelite_zipfile:0:${end_index}}
|
||||
wget ${paddlelite_url} && tar -xf ${paddlelite_zipfile}
|
||||
mkdir -p ${paddlelite_file}/demo/cxx/ocr/test_lite
|
||||
cp -r ${model_path}/*_opt.nb test_data ${paddlelite_file}/demo/cxx/ocr/test_lite
|
||||
cp ppocr/utils/ppocr_keys_v1.txt deploy/lite/config.txt ${paddlelite_file}/demo/cxx/ocr/test_lite
|
||||
cp -r ./deploy/lite/* ${paddlelite_file}/demo/cxx/ocr/
|
||||
cp ${paddlelite_file}/cxx/lib/libpaddle_light_api_shared.so ${paddlelite_file}/demo/cxx/ocr/test_lite
|
||||
cp ${FILENAME} test_tipc/test_lite_arm_cpp.sh test_tipc/common_func.sh ${paddlelite_file}/demo/cxx/ocr/test_lite
|
||||
cd ${paddlelite_file}/demo/cxx/ocr/
|
||||
git clone https://github.com/cuicheng01/AutoLog.git
|
||||
|
||||
# make
|
||||
make -j
|
||||
sleep 1
|
||||
make -j
|
||||
cp ocr_db_crnn test_lite && cp test_lite/libpaddle_light_api_shared.so test_lite/libc++_shared.so
|
||||
tar -cf test_lite.tar ./test_lite && cp test_lite.tar ${current_dir} && cd ${current_dir}
|
||||
rm -rf ${paddlelite_file}* && rm -rf ${model_path}
|
|
@ -1,159 +0,0 @@
|
|||
#!/bin/bash
|
||||
source ./common_func.sh
|
||||
export LD_LIBRARY_PATH=${PWD}:$LD_LIBRARY_PATH
|
||||
|
||||
FILENAME=$1
|
||||
dataline=$(cat $FILENAME)
|
||||
# parser params
|
||||
IFS=$'\n'
|
||||
lines=(${dataline})
|
||||
|
||||
# parser lite inference
|
||||
inference_cmd=$(func_parser_value "${lines[1]}")
|
||||
runtime_device=$(func_parser_value "${lines[2]}")
|
||||
det_model_list=$(func_parser_value "${lines[3]}")
|
||||
rec_model_list=$(func_parser_value "${lines[4]}")
|
||||
cls_model_list=$(func_parser_value "${lines[5]}")
|
||||
cpu_threads_list=$(func_parser_value "${lines[6]}")
|
||||
det_batch_size_list=$(func_parser_value "${lines[7]}")
|
||||
rec_batch_size_list=$(func_parser_value "${lines[8]}")
|
||||
infer_img_dir_list=$(func_parser_value "${lines[9]}")
|
||||
config_dir=$(func_parser_value "${lines[10]}")
|
||||
rec_dict_dir=$(func_parser_value "${lines[11]}")
|
||||
benchmark_value=$(func_parser_value "${lines[12]}")
|
||||
|
||||
if [[ $inference_cmd =~ "det" ]]; then
|
||||
lite_model_list=${det_lite_model_list}
|
||||
elif [[ $inference_cmd =~ "rec" ]]; then
|
||||
lite_model_list=(${rec_lite_model_list[*]} ${cls_lite_model_list[*]})
|
||||
elif [[ $inference_cmd =~ "system" ]]; then
|
||||
lite_model_list=(${det_lite_model_list[*]} ${rec_lite_model_list[*]} ${cls_lite_model_list[*]})
|
||||
else
|
||||
echo "inference_cmd is wrong, please check."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
LOG_PATH="./output"
|
||||
mkdir -p ${LOG_PATH}
|
||||
status_log="${LOG_PATH}/results.log"
|
||||
|
||||
|
||||
function func_test_det(){
|
||||
IFS='|'
|
||||
_script=$1
|
||||
_det_model=$2
|
||||
_log_path=$3
|
||||
_img_dir=$4
|
||||
_config=$5
|
||||
if [[ $_det_model =~ "slim" ]]; then
|
||||
precision="INT8"
|
||||
else
|
||||
precision="FP32"
|
||||
fi
|
||||
|
||||
# lite inference
|
||||
for num_threads in ${cpu_threads_list[*]}; do
|
||||
for det_batchsize in ${det_batch_size_list[*]}; do
|
||||
_save_log_path="${_log_path}/lite_${_det_model}_runtime_device_${runtime_device}_precision_${precision}_det_batchsize_${det_batchsize}_threads_${num_threads}.log"
|
||||
command="${_script} ${_det_model} ${runtime_device} ${precision} ${num_threads} ${det_batchsize} ${_img_dir} ${_config} ${benchmark_value} > ${_save_log_path} 2>&1"
|
||||
eval ${command}
|
||||
status_check $? "${command}" "${status_log}"
|
||||
done
|
||||
done
|
||||
}
|
||||
|
||||
function func_test_rec(){
|
||||
IFS='|'
|
||||
_script=$1
|
||||
_rec_model=$2
|
||||
_cls_model=$3
|
||||
_log_path=$4
|
||||
_img_dir=$5
|
||||
_config=$6
|
||||
_rec_dict_dir=$7
|
||||
|
||||
if [[ $_det_model =~ "slim" ]]; then
|
||||
_precision="INT8"
|
||||
else
|
||||
_precision="FP32"
|
||||
fi
|
||||
|
||||
# lite inference
|
||||
for num_threads in ${cpu_threads_list[*]}; do
|
||||
for rec_batchsize in ${rec_batch_size_list[*]}; do
|
||||
_save_log_path="${_log_path}/lite_${_rec_model}_${cls_model}_runtime_device_${runtime_device}_precision_${_precision}_rec_batchsize_${rec_batchsize}_threads_${num_threads}.log"
|
||||
command="${_script} ${_rec_model} ${_cls_model} ${runtime_device} ${_precision} ${num_threads} ${rec_batchsize} ${_img_dir} ${_config} ${_rec_dict_dir} ${benchmark_value} > ${_save_log_path} 2>&1"
|
||||
eval ${command}
|
||||
status_check $? "${command}" "${status_log}"
|
||||
done
|
||||
done
|
||||
}
|
||||
|
||||
function func_test_system(){
|
||||
IFS='|'
|
||||
_script=$1
|
||||
_det_model=$2
|
||||
_rec_model=$3
|
||||
_cls_model=$4
|
||||
_log_path=$5
|
||||
_img_dir=$6
|
||||
_config=$7
|
||||
_rec_dict_dir=$8
|
||||
if [[ $_det_model =~ "slim" ]]; then
|
||||
_precision="INT8"
|
||||
else
|
||||
_precision="FP32"
|
||||
fi
|
||||
|
||||
# lite inference
|
||||
for num_threads in ${cpu_threads_list[*]}; do
|
||||
for det_batchsize in ${det_batch_size_list[*]}; do
|
||||
for rec_batchsize in ${rec_batch_size_list[*]}; do
|
||||
_save_log_path="${_log_path}/lite_${_det_model}_${_rec_model}_${_cls_model}_runtime_device_${runtime_device}_precision_${_precision}_det_batchsize_${det_batchsize}_rec_batchsize_${rec_batchsize}_threads_${num_threads}.log"
|
||||
command="${_script} ${_det_model} ${_rec_model} ${_cls_model} ${runtime_device} ${_precision} ${num_threads} ${det_batchsize} ${_img_dir} ${_config} ${_rec_dict_dir} ${benchmark_value} > ${_save_log_path} 2>&1"
|
||||
eval ${command}
|
||||
status_check $? "${command}" "${status_log}"
|
||||
done
|
||||
done
|
||||
done
|
||||
}
|
||||
|
||||
|
||||
echo "################### run test ###################"
|
||||
|
||||
if [[ $inference_cmd =~ "det" ]]; then
|
||||
IFS="|"
|
||||
det_model_list=(${det_model_list[*]})
|
||||
|
||||
for i in {0..1}; do
|
||||
#run lite inference
|
||||
for img_dir in ${infer_img_dir_list[*]}; do
|
||||
func_test_det "${inference_cmd}" "${det_model_list[i]}_opt.nb" "${LOG_PATH}" "${img_dir}" "${config_dir}"
|
||||
done
|
||||
done
|
||||
|
||||
elif [[ $inference_cmd =~ "rec" ]]; then
|
||||
IFS="|"
|
||||
rec_model_list=(${rec_model_list[*]})
|
||||
cls_model_list=(${cls_model_list[*]})
|
||||
|
||||
for i in {0..1}; do
|
||||
#run lite inference
|
||||
for img_dir in ${infer_img_dir_list[*]}; do
|
||||
func_test_rec "${inference_cmd}" "${rec_model}_opt.nb" "${cls_model_list[i]}_opt.nb" "${LOG_PATH}" "${img_dir}" "${rec_dict_dir}" "${config_dir}"
|
||||
done
|
||||
done
|
||||
|
||||
elif [[ $inference_cmd =~ "system" ]]; then
|
||||
IFS="|"
|
||||
det_model_list=(${det_model_list[*]})
|
||||
rec_model_list=(${rec_model_list[*]})
|
||||
cls_model_list=(${cls_model_list[*]})
|
||||
|
||||
for i in {0..1}; do
|
||||
#run lite inference
|
||||
for img_dir in ${infer_img_dir_list[*]}; do
|
||||
func_test_system "${inference_cmd}" "${det_model_list[i]}_opt.nb" "${rec_model_list[i]}_opt.nb" "${cls_model_list[i]}_opt.nb" "${LOG_PATH}" "${img_dir}" "${config_dir}" "${rec_dict_dir}"
|
||||
done
|
||||
done
|
||||
fi
|
|
@ -0,0 +1,95 @@
|
|||
#!/bin/bash
|
||||
source test_tipc/common_func.sh
|
||||
current_path=$PWD
|
||||
|
||||
IFS=$'\n'
|
||||
|
||||
TIPC_CONFIG=$1
|
||||
tipc_dataline=$(cat $TIPC_CONFIG)
|
||||
tipc_lines=(${tipc_dataline})
|
||||
|
||||
work_path="./deploy/lite"
|
||||
cd ${work_path}
|
||||
|
||||
BASIC_CONFIG="config.txt"
|
||||
basic_dataline=$(cat $BASIC_CONFIG)
|
||||
basic_lines=(${basic_dataline})
|
||||
|
||||
# parser basic config
|
||||
label_path=$(func_parser_value_lite "${basic_lines[1]}" " ")
|
||||
resize_short_size=$(func_parser_value_lite "${basic_lines[2]}" " ")
|
||||
crop_size=$(func_parser_value_lite "${basic_lines[3]}" " ")
|
||||
visualize=$(func_parser_value_lite "${basic_lines[4]}" " ")
|
||||
enable_benchmark=$(func_parser_value_lite "${basic_lines[9]}" " ")
|
||||
tipc_benchmark=$(func_parser_value_lite "${basic_lines[10]}" " ")
|
||||
|
||||
# parser tipc config
|
||||
runtime_device=$(func_parser_value_lite "${tipc_lines[0]}" ":")
|
||||
lite_arm_work_path=$(func_parser_value_lite "${tipc_lines[1]}" ":")
|
||||
lite_arm_so_path=$(func_parser_value_lite "${tipc_lines[2]}" ":")
|
||||
clas_model_name=$(func_parser_value_lite "${tipc_lines[3]}" ":")
|
||||
inference_cmd=$(func_parser_value_lite "${tipc_lines[4]}" ":")
|
||||
num_threads_list=$(func_parser_value_lite "${tipc_lines[5]}" ":")
|
||||
batch_size_list=$(func_parser_value_lite "${tipc_lines[6]}" ":")
|
||||
precision_list=$(func_parser_value_lite "${tipc_lines[7]}" ":")
|
||||
|
||||
LOG_PATH=${current_path}"/output"
|
||||
mkdir -p ${LOG_PATH}
|
||||
status_log="${LOG_PATH}/results.log"
|
||||
|
||||
#run Lite TIPC
|
||||
function func_test_tipc(){
|
||||
IFS="|"
|
||||
_basic_config=$1
|
||||
_model_name=$2
|
||||
_log_path=$3
|
||||
for num_threads in ${num_threads_list[*]}; do
|
||||
if [ $(uname) = "Darwin" ]; then
|
||||
sed -i " " "s/num_threads.*/num_threads ${num_threads}/" ${_basic_config}
|
||||
elif [ $(expr substr $(uname -s) 1 5) = "Linux"]; then
|
||||
sed -i "s/num_threads.*/num_threads ${num_threads}/" ${_basic_config}
|
||||
fi
|
||||
for batch_size in ${batch_size_list[*]}; do
|
||||
if [ $(uname) = "Darwin" ]; then
|
||||
sed -i " " "s/batch_size.*/batch_size ${batch_size}/" ${_basic_config}
|
||||
elif [ $(expr substr $(uname -s) 1 5) = "Linux"]; then
|
||||
sed -i "s/batch_size.*/batch_size ${batch_size}/" ${_basic_config}
|
||||
fi
|
||||
for precision in ${precision_list[*]}; do
|
||||
if [ $(uname) = "Darwin" ]; then
|
||||
sed -i " " "s/precision.*/precision ${precision}/" ${_basic_config}
|
||||
elif [ $(expr substr $(uname -s) 1 5) = "Linux"]; then
|
||||
sed -i "s/precision.*/precision ${precision}/" ${_basic_config}
|
||||
fi
|
||||
_save_log_path="${_log_path}/lite_${_model_name}_runtime_device_${runtime_device}_precision_${precision}_batchsize_${batch_size}_threads_${num_threads}.log"
|
||||
real_inference_cmd=$(echo ${inference_cmd} | awk -F " " '{print path $1" "path $2" "path $3}' path="$lite_arm_work_path")
|
||||
command1="adb push ${_basic_config} ${lite_arm_work_path}"
|
||||
eval ${command1}
|
||||
command2="adb shell 'export LD_LIBRARY_PATH=${lite_arm_work_path}; ${real_inference_cmd}' > ${_save_log_path} 2>&1"
|
||||
eval ${command2}
|
||||
status_check $? "${command2}" "${status_log}"
|
||||
done
|
||||
done
|
||||
done
|
||||
}
|
||||
|
||||
|
||||
echo "################### run test tipc ###################"
|
||||
label_map=$(echo ${label_path} | awk -F "/" '{print $NF}')
|
||||
|
||||
if [ $(uname) = "Darwin" ]; then
|
||||
# for Mac
|
||||
sed -i " " "s/runtime_device.*/runtime_device arm_cpu/" ${BASIC_CONFIG}
|
||||
escape_lite_arm_work_path=$(echo ${lite_arm_work_path//\//\\\/})
|
||||
sed -i " " "s/clas_model_file.*/clas_model_file ${escape_lite_arm_work_path}${clas_model_name}.nb/" ${BASIC_CONFIG}
|
||||
sed -i " " "s/label_path.*/label_path ${escape_lite_arm_work_path}${label_map}/" ${BASIC_CONFIG}
|
||||
sed -i " " "s/tipc_benchmark.*/tipc_benchmark 1/" ${BASIC_CONFIG}
|
||||
elif [ $(expr substr $(uname -s) 1 5) = "Linux"]; then
|
||||
# for Linux
|
||||
sed -i "s/runtime_device.*/runtime_device arm_cpu/" ${BASIC_CONFIG}
|
||||
escape_lite_arm_work_path=$(echo ${lite_arm_work_path//\//\\\/})
|
||||
sed -i "s/clas_model_file.*/clas_model_file ${escape_lite_arm_work_path}${clas_model_name}/" ${BASIC_CONFIG}
|
||||
sed -i "s/label_path.*/label_path ${escape_lite_arm_work_path}${label_path}/" ${BASIC_CONFIG}
|
||||
sed -i "s/tipc_benchmark.*/tipc_benchmark 1/" ${BASIC_CONFIG}
|
||||
fi
|
||||
func_test_tipc ${BASIC_CONFIG} ${clas_model_name} ${LOG_PATH}
|
Loading…
Reference in New Issue