diff --git a/deploy/configs/PULC/traffic_sign/inference_traffic_sign.yaml b/deploy/configs/PULC/traffic_sign/inference_traffic_sign.yaml
new file mode 100644
index 000000000..09c4521f2
--- /dev/null
+++ b/deploy/configs/PULC/traffic_sign/inference_traffic_sign.yaml
@@ -0,0 +1,35 @@
+Global:
+ infer_imgs: "./images/PULC/traffic_sign/99603_17806.jpg"
+ inference_model_dir: "./models/traffic_sign_infer"
+ batch_size: 1
+ use_gpu: True
+ enable_mkldnn: True
+ cpu_num_threads: 10
+ benchmark: False
+ use_fp16: False
+ ir_optim: True
+ use_tensorrt: False
+ gpu_mem: 8000
+ enable_profile: False
+
+PreProcess:
+ transform_ops:
+ - ResizeImage:
+ resize_short: 256
+ - CropImage:
+ size: 224
+ - NormalizeImage:
+ scale: 0.00392157
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ channel_num: 3
+ - ToCHWImage:
+
+PostProcess:
+ main_indicator: Topk
+ Topk:
+ topk: 5
+ class_id_map_file: "../dataset/traffic_sign/label_name_id.txt"
+ SavePreLabel:
+ save_dir: ./pre_label/
diff --git a/deploy/configs/PULC/vehicle_attr/inference_vehicle_attr.yaml b/deploy/configs/PULC/vehicle_attr/inference_vehicle_attr.yaml
new file mode 100644
index 000000000..f47a73ab3
--- /dev/null
+++ b/deploy/configs/PULC/vehicle_attr/inference_vehicle_attr.yaml
@@ -0,0 +1,32 @@
+Global:
+ infer_imgs: "./images/PULC/vehicle_attr/0002_c002_00030670_0.jpg"
+ inference_model_dir: "./models/vehicle_attr_infer"
+ batch_size: 1
+ use_gpu: True
+ enable_mkldnn: True
+ cpu_num_threads: 10
+ benchmark: False
+ use_fp16: False
+ ir_optim: True
+ use_tensorrt: False
+ gpu_mem: 8000
+ enable_profile: False
+
+PreProcess:
+ transform_ops:
+ - ResizeImage:
+ size: [256, 192]
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ channel_num: 3
+ - ToCHWImage:
+
+PostProcess:
+ main_indicator: VehicleAttribute
+ VehicleAttribute:
+ color_threshold: 0.5
+ type_threshold: 0.5
+
diff --git a/deploy/images/PULC/traffic_sign/100999_83928.jpg b/deploy/images/PULC/traffic_sign/100999_83928.jpg
new file mode 100644
index 000000000..6f32ed5ae
Binary files /dev/null and b/deploy/images/PULC/traffic_sign/100999_83928.jpg differ
diff --git a/deploy/images/PULC/traffic_sign/99603_17806.jpg b/deploy/images/PULC/traffic_sign/99603_17806.jpg
new file mode 100644
index 000000000..c792fdf6e
Binary files /dev/null and b/deploy/images/PULC/traffic_sign/99603_17806.jpg differ
diff --git a/deploy/images/PULC/vehicle_attr/0002_c002_00030670_0.jpg b/deploy/images/PULC/vehicle_attr/0002_c002_00030670_0.jpg
new file mode 100644
index 000000000..bb5de9fc6
Binary files /dev/null and b/deploy/images/PULC/vehicle_attr/0002_c002_00030670_0.jpg differ
diff --git a/deploy/images/PULC/vehicle_attr/0014_c012_00040750_0.jpg b/deploy/images/PULC/vehicle_attr/0014_c012_00040750_0.jpg
new file mode 100644
index 000000000..76207d43c
Binary files /dev/null and b/deploy/images/PULC/vehicle_attr/0014_c012_00040750_0.jpg differ
diff --git a/deploy/python/postprocess.py b/deploy/python/postprocess.py
index 1107b8050..9fe15bea8 100644
--- a/deploy/python/postprocess.py
+++ b/deploy/python/postprocess.py
@@ -280,3 +280,45 @@ class Attribute(object):
batch_res.append([label_res, pred_res])
return batch_res
+
+
+class VehicleAttribute(object):
+ def __init__(self, color_threshold=0.5, type_threshold=0.5):
+ self.color_threshold = color_threshold
+ self.type_threshold = type_threshold
+ self.color_list = [
+ "yellow", "orange", "green", "gray", "red", "blue", "white",
+ "golden", "brown", "black"
+ ]
+ self.type_list = [
+ "sedan", "suv", "van", "hatchback", "mpv", "pickup", "bus",
+ "truck", "estate"
+ ]
+
+ def __call__(self, batch_preds, file_names=None):
+ # postprocess output of predictor
+ batch_res = []
+ for res in batch_preds:
+ res = res.tolist()
+ label_res = []
+ color_idx = np.argmax(res[:10])
+ type_idx = np.argmax(res[10:])
+ if res[color_idx] >= self.color_threshold:
+ color_info = f"Color: ({self.color_list[color_idx]}, prob: {res[color_idx]})"
+ else:
+ color_info = "Color unknown"
+
+ if res[type_idx + 10] >= self.type_threshold:
+ type_info = f"Type: ({self.type_list[type_idx]}, prob: {res[type_idx + 10]})"
+ else:
+ type_info = "Type unknown"
+
+ label_res = f"{color_info}, {type_info}"
+
+ threshold_list = [self.color_threshold
+ ] * 10 + [self.type_threshold] * 9
+ pred_res = (np.array(res) > np.array(threshold_list)
+ ).astype(np.int8).tolist()
+
+ batch_res.append([label_res, pred_res])
+ return batch_res
diff --git a/deploy/python/predict_cls.py b/deploy/python/predict_cls.py
index 41b46090a..440624e0c 100644
--- a/deploy/python/predict_cls.py
+++ b/deploy/python/predict_cls.py
@@ -138,7 +138,9 @@ def main(config):
continue
batch_results = cls_predictor.predict(batch_imgs)
for number, result_dict in enumerate(batch_results):
- if "Attribute" in config["PostProcess"]:
+ if "Attribute" in config[
+ "PostProcess"] or "VehicleAttribute" in config[
+ "PostProcess"]:
filename = batch_names[number]
attr_message = result_dict[0]
pred_res = result_dict[1]
diff --git a/docs/images/PULC/docs/traffic_sign_data_demo.png b/docs/images/PULC/docs/traffic_sign_data_demo.png
new file mode 100644
index 000000000..6fac97a29
Binary files /dev/null and b/docs/images/PULC/docs/traffic_sign_data_demo.png differ
diff --git a/docs/images/PULC/docs/vehicle_attr_data_demo.png b/docs/images/PULC/docs/vehicle_attr_data_demo.png
new file mode 100644
index 000000000..68c67acb3
Binary files /dev/null and b/docs/images/PULC/docs/vehicle_attr_data_demo.png differ
diff --git a/docs/zh_CN/PULC/PULC_traffic_sign.md b/docs/zh_CN/PULC/PULC_traffic_sign.md
new file mode 100644
index 000000000..342bd67f1
--- /dev/null
+++ b/docs/zh_CN/PULC/PULC_traffic_sign.md
@@ -0,0 +1,420 @@
+# PULC 交通标志分类模型
+
+------
+
+
+## 目录
+
+- [1. 模型和应用场景介绍](#1)
+- [2. 模型快速体验](#2)
+- [3. 模型训练、评估和预测](#3)
+ - [3.1 环境配置](#3.1)
+ - [3.2 数据准备](#3.2)
+ - [3.2.1 数据集来源](#3.2.1)
+ - [3.2.2 数据集获取](#3.2.2)
+ - [3.3 模型训练](#3.3)
+ - [3.4 模型评估](#3.4)
+ - [3.5 模型预测](#3.5)
+- [4. 模型压缩](#4)
+ - [4.1 SKL-UGI 知识蒸馏](#4.1)
+ - [4.1.1 教师模型训练](#4.1.1)
+ - [4.1.2 蒸馏训练](#4.1.2)
+- [5. 超参搜索](#5)
+- [6. 模型推理部署](#6)
+ - [6.1 推理模型准备](#6.1)
+ - [6.1.1 基于训练得到的权重导出 inference 模型](#6.1.1)
+ - [6.1.2 直接下载 inference 模型](#6.1.2)
+ - [6.2 基于 Python 预测引擎推理](#6.2)
+ - [6.2.1 预测单张图像](#6.2.1)
+ - [6.2.2 基于文件夹的批量预测](#6.2.2)
+ - [6.3 基于 C++ 预测引擎推理](#6.3)
+ - [6.4 服务化部署](#6.4)
+ - [6.5 端侧部署](#6.5)
+ - [6.6 Paddle2ONNX 模型转换与预测](#6.6)
+
+
+
+
+## 1. 模型和应用场景介绍
+
+该案例提供了用户使用 PaddleClas 的超轻量图像分类方案(PULC,Practical Ultra Lightweight Classification)快速构建轻量级、高精度、可落地的交通标志分类模型。该模型可以广泛应用于自动驾驶、道路监控等场景。
+
+下表列出了不同交通标志分类模型的相关指标,前两行展现了使用 SwinTranformer_tiny 和 MobileNetV3_large_x1_0 作为 backbone 训练得到的模型的相关指标,第三行至第六行依次展现了替换 backbone 为 PPLCNet_x1_0、使用 SSLD 预训练模型、使用 SSLD 预训练模型 + EDA 策略、使用 SSLD 预训练模型 + EDA 策略 + SKL-UGI 知识蒸馏策略训练得到的模型的相关指标。
+
+
+| 模型 | Top-1 Acc(%) | 延时(ms) | 存储(M) | 策略 |
+|-------|-----------|----------|---------------|---------------|
+| SwinTranformer_tiny | 98.11 | 87.19 | 111 | 使用ImageNet预训练模型 |
+| MobileNetV3_large_x1_0 | 97.79 | 5.59 | 23 | 使用ImageNet预训练模型 |
+| PPLCNet_x1_0 | 97.78 | 2.67 | 8.2 | 使用ImageNet预训练模型 |
+| PPLCNet_x1_0 | 97.84 | 2.67 | 8.2 | 使用SSLD预训练模型 |
+| PPLCNet_x1_0 | 98.14 | 2.67 | 8.2 | 使用SSLD预训练模型+EDA策略|
+| PPLCNet_x1_0 | 98.35 | 2.67 | 8.2 | 使用SSLD预训练模型+EDA策略+SKL-UGI知识蒸馏策略|
+
+从表中可以看出,backbone 为 SwinTranformer_tiny 时精度较高,但是推理速度较慢。将 backbone 替换为轻量级模型 MobileNetV3_large_x1_0 后,速度可以大幅提升,但是精度下降明显。将 backbone 替换为 PPLCNet_x1_0 时,精度低0.01%,但是速度提升 2 倍左右。在此基础上,使用 SSLD 预训练模型后,在不改变推理速度的前提下,精度可以提升约 0.06%,进一步地,当融合EDA策略后,精度可以再提升 0.3%,最后,在使用 SKL-UGI 知识蒸馏后,精度可以继续提升 0.21%。此时,PPLCNet_x1_0 的精度超越了SwinTranformer_tiny,速度快32倍。关于 PULC 的训练方法和推理部署方法将在下面详细介绍。
+
+**备注:**
+
+* 关于PPLCNet的介绍可以参考[PPLCNet介绍](../models/PP-LCNet.md),相关论文可以查阅[PPLCNet paper](https://arxiv.org/abs/2109.15099)。
+
+
+
+
+## 2. 模型快速体验
+
+ (pip方式,待补充)
+
+
+
+
+## 3. 模型训练、评估和预测
+
+
+
+### 3.1 环境配置
+
+* 安装:请先参考 [Paddle 安装教程](../installation/install_paddle.md) 以及 [PaddleClas 安装教程](../installation/install_paddleclas.md) 配置 PaddleClas 运行环境。
+
+
+
+### 3.2 数据准备
+
+
+
+#### 3.2.1 数据集来源
+
+本案例中所使用的数据为[Tsinghua-Tencent 100K dataset (CC-BY-NC license)](https://cg.cs.tsinghua.edu.cn/traffic-sign/),在使用的过程中,对交通标志检测框进行随机扩充与裁剪,从而得到用于训练与测试的图像,下面简称该数据集为`TT100K`数据集。
+
+
+
+#### 3.2.2 数据集获取
+
+在TT00K数据集上,对交通标志检测框进行随机扩充与裁剪,从而得到用于训练与测试的图像。随机扩充检测框的逻辑如下所示。
+
+```python
+def get_random_crop_box(xmin, ymin, xmax, ymax, img_height, img_width, ratio=1.0):
+ h = ymax - ymin
+ w = ymax - ymin
+
+ xmin_diff = random.random() * ratio * min(w, xmin/ratio)
+ ymin_diff = random.random() * ratio * min(h, ymin/ratio)
+ xmax_diff = random.random() * ratio * min(w, (img_width-xmin-1)/ratio)
+ ymax_diff = random.random() * ratio * min(h, (img_height-ymin-1)/ratio)
+
+ new_xmin = round(xmin - xmin_diff)
+ new_ymin = round(ymin - ymin_diff)
+ new_xmax = round(xmax + xmax_diff)
+ new_ymax = round(ymax + ymax_diff)
+
+ return new_xmin, new_ymin, new_xmax, new_ymax
+```
+
+完整的预处理逻辑,可以参考下载好的数据集文件夹中的`deal.py`文件。
+
+
+处理后的数据集部分数据可视化如下。
+
+
+

+
+
+
+此处提供了经过上述方法处理好的数据,可以直接下载得到。
+
+进入 PaddleClas 目录。
+
+```
+cd path_to_PaddleClas
+```
+
+进入 `dataset/` 目录,下载并解压交通标志分类场景的数据。
+
+```shell
+cd dataset
+wget https://paddleclas.bj.bcebos.com/data/cls_demo/traffic_sign.tar
+tar -xf traffic_sign.tar
+cd ../
+```
+
+执行上述命令后,`dataset/`下存在`traffic_sign`目录,该目录中具有以下数据:
+
+```
+traffic_sign
+├── train
+│ ├── 0_62627.jpg
+│ ├── 100000_89031.jpg
+│ ├── 100001_89031.jpg
+...
+├── test
+│ ├── 100423_2315.jpg
+│ ├── 100424_2315.jpg
+│ ├── 100425_2315.jpg
+...
+├── other
+│ ├── 100603_3422.jpg
+│ ├── 100604_3422.jpg
+...
+├── label_list_train.txt
+├── label_list_test.txt
+├── label_list_other.txt
+├── label_list_train_for_distillation.txt
+├── label_list_train.txt.debug
+├── label_list_test.txt.debug
+├── label_name_id.txt
+├── deal.py
+```
+
+其中`train/`和`test/`分别为训练集和验证集。`label_list_train.txt`和`label_list_test.txt`分别为训练集和验证集的标签文件,`label_list_train.txt.debug`和`label_list_test.txt.debug`分别为训练集和验证集的`debug`标签文件,其分别是`label_list_train.txt`和`label_list_test.txt`的子集,用该文件可以快速体验本案例的流程。`train`与`other`的混合数据用于本案例的`SKL-UGI知识蒸馏策略`,对应的训练标签文件为`label_list_train_for_distillation.txt`。
+
+
+**备注:**
+
+* 关于 `label_list_train.txt`、`label_list_test.txt`的格式说明,可以参考[PaddleClas分类数据集格式说明](../data_preparation/classification_dataset.md#1-数据集格式说明) 。
+
+* 关于如何得到蒸馏的标签文件可以参考[知识蒸馏标签获得方法](@ruoyu)。
+
+
+
+
+### 3.3 模型训练
+
+
+在 `ppcls/configs/PULC/traffic_sign/PPLCNet_x1_0.yaml` 中提供了基于该场景的训练配置,可以通过如下脚本启动训练:
+
+```shell
+export CUDA_VISIBLE_DEVICES=0,1,2,3
+python3 -m paddle.distributed.launch \
+ --gpus="0,1,2,3" \
+ tools/train.py \
+ -c ./ppcls/configs/PULC/traffic_sign/PPLCNet_x1_0.yaml
+```
+
+验证集的最佳指标在 `98.14%` 左右(数据集较小,一般有0.1%左右的波动)。
+
+
+
+
+### 3.4 模型评估
+
+训练好模型之后,可以通过以下命令实现对模型指标的评估。
+
+```bash
+python3 tools/eval.py \
+ -c ./ppcls/configs/PULC/traffic_sign/PPLCNet_x1_0.yaml \
+ -o Global.pretrained_model="output/PPLCNet_x1_0/best_model"
+```
+
+其中 `-o Global.pretrained_model="output/PPLCNet_x1_0/best_model"` 指定了当前最佳权重所在的路径,如果指定其他权重,只需替换对应的路径即可。
+
+
+
+### 3.5 模型预测
+
+模型训练完成之后,可以加载训练得到的预训练模型,进行模型预测。在模型库的 `tools/infer.py` 中提供了完整的示例,只需执行下述命令即可完成模型预测:
+
+```bash
+python3 tools/infer.py \
+ -c ./ppcls/configs/PULC/traffic_sign/PPLCNet_x1_0.yaml \
+ -o Global.pretrained_model=output/DistillationModel/best_model
+```
+
+输出结果如下:
+
+```
+99603_17806.jpg: class id(s): [216, 145, 49, 207, 169], score(s): [1.00, 0.00, 0.00, 0.00, 0.00], label_name(s): ['pm20', 'pm30', 'pm40', 'pl25', 'pm15']
+```
+
+**备注:**
+
+* 这里`-o Global.pretrained_model="output/PPLCNet_x1_0/best_model"` 指定了当前最佳权重所在的路径,如果指定其他权重,只需替换对应的路径即可。
+
+* 默认是对 `deploy/images/PULC/traffic_sign/99603_17806.jpg` 进行预测,此处也可以通过增加字段 `-o Infer.infer_imgs=xxx` 对其他图片预测。
+
+
+
+## 4. 模型压缩
+
+
+
+### 4.1 SKL-UGI 知识蒸馏
+
+SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[SKL-UGI 知识蒸馏](@ruoyu)。
+
+
+
+#### 4.1.1 教师模型训练
+
+复用 `ppcls/configs/PULC/traffic_sign/PPLCNet_x1_0.yaml` 中的超参数,训练教师模型,训练脚本如下:
+
+```shell
+export CUDA_VISIBLE_DEVICES=0,1,2,3
+python3 -m paddle.distributed.launch \
+ --gpus="0,1,2,3" \
+ tools/train.py \
+ -c ./ppcls/configs/PULC/traffic_sign/PPLCNet_x1_0.yaml \
+ -o Arch.name=ResNet101_vd
+```
+
+验证集的最佳指标为 `98.59%` 左右,当前教师模型最好的权重保存在 `output/ResNet101_vd/best_model.pdparams`。
+
+
+
+#### 4.1.2 蒸馏训练
+
+配置文件`ppcls/configs/PULC/traffic_sign/PPLCNet_x1_0_distillation.yaml`提供了`SKL-UGI知识蒸馏策略`的配置。该配置将`ResNet101_vd`当作教师模型,`PPLCNet_x1_0`当作学生模型,使用ImageNet数据集的验证集作为新增的无标签数据。训练脚本如下:
+
+```shell
+export CUDA_VISIBLE_DEVICES=0,1,2,3
+python3 -m paddle.distributed.launch \
+ --gpus="0,1,2,3" \
+ tools/train.py \
+ -c ./ppcls/configs/PULC/traffic_sign/PPLCNet_x1_0_distillation.yaml \
+ -o Arch.models.0.Teacher.pretrained=output/ResNet101_vd/best_model
+```
+
+验证集的最佳指标为 `98.35%` 左右,当前模型最好的权重保存在 `output/DistillationModel/best_model_student.pdparams`。
+
+
+
+
+## 5. 超参搜索
+
+在 [3.2 节](#3.2)和 [4.1 节](#4.1)所使用的超参数是根据 PaddleClas 提供的 `SHAS 超参数搜索策略` 搜索得到的,如果希望在自己的数据集上得到更好的结果,可以参考[SHAS 超参数搜索策略](#TODO)来获得更好的训练超参数。
+
+**备注:** 此部分内容是可选内容,搜索过程需要较长的时间,您可以根据自己的硬件情况来选择执行。如果没有更换数据集,可以忽略此节内容。
+
+
+
+## 6. 模型推理部署
+
+
+
+### 6.1 推理模型准备
+
+Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)。
+
+当使用 Paddle Inference 推理时,加载的模型类型为 inference 模型。本案例提供了两种获得 inference 模型的方法,如果希望得到和文档相同的结果,请选择[直接下载 inference 模型](#6.1.2)的方式。
+
+
+
+### 6.1.1 基于训练得到的权重导出 inference 模型
+
+此处,我们提供了将权重和模型转换的脚本,执行该脚本可以得到对应的 inference 模型:
+
+```bash
+python3 tools/export_model.py \
+ -c ./ppcls/configs/PULC/traffic_sign/PPLCNet_x1_0.yaml \
+ -o Global.pretrained_model=output/DistillationModel/best_model_student \
+ -o Global.save_inference_dir=deploy/models/PPLCNet_x1_0_traffic_sign_infer
+```
+执行完该脚本后会在 `deploy/models/` 下生成 `PPLCNet_x1_0_traffic_sign_infer` 文件夹,`models` 文件夹下应有如下文件结构:
+
+```
+├── PPLCNet_x1_0_traffic_sign_infer
+│ ├── inference.pdiparams
+│ ├── inference.pdiparams.info
+│ └── inference.pdmodel
+```
+
+**备注:** 此处的最佳权重是经过知识蒸馏后的权重路径,如果没有执行知识蒸馏的步骤,最佳模型保存在`output/PPLCNet_x1_0/best_model.pdparams`中。
+
+
+
+### 6.1.2 直接下载 inference 模型
+
+[6.1.1 小节](#6.1.1)提供了导出 inference 模型的方法,此处也提供了该场景可以下载的 inference 模型,可以直接下载体验。
+
+```
+cd deploy/models
+# 下载 inference 模型并解压
+wget https://paddleclas.bj.bcebos.com/models/PULC/traffic_sign_infer.tar && tar -xf traffic_sign_infer.tar
+```
+
+解压完毕后,`models` 文件夹下应有如下文件结构:
+
+```
+├── traffic_sign_infer
+│ ├── inference.pdiparams
+│ ├── inference.pdiparams.info
+│ └── inference.pdmodel
+```
+
+
+
+### 6.2 基于 Python 预测引擎推理
+
+
+
+
+#### 6.2.1 预测单张图像
+
+返回 `deploy` 目录:
+
+```
+cd ../
+```
+
+运行下面的命令,对图像 `./images/PULC/traffic_sign/99603_17806.jpg` 进行交通标志分类。
+
+```shell
+# 使用下面的命令使用 GPU 进行预测
+python3.7 python/predict_cls.py -c configs/PULC/traffic_sign/inference_traffic_sign.yaml
+# 使用下面的命令使用 CPU 进行预测
+python3.7 python/predict_cls.py -c configs/PULC/traffic_sign/inference_traffic_sign.yaml -o Global.use_gpu=False
+```
+
+输出结果如下。
+
+```
+99603_17806.jpg: class id(s): [216, 145, 49, 207, 169], score(s): [1.00, 0.00, 0.00, 0.00, 0.00], label_name(s): ['pm20', 'pm30', 'pm40', 'pl25', 'pm15']
+```
+
+
+
+#### 6.2.2 基于文件夹的批量预测
+
+如果希望预测文件夹内的图像,可以直接修改配置文件中的 `Global.infer_imgs` 字段,也可以通过下面的 `-o` 参数修改对应的配置。
+
+```shell
+# 使用下面的命令使用 GPU 进行预测,如果希望使用 CPU 预测,可以在命令后面添加 -o Global.use_gpu=False
+python3.7 python/predict_cls.py -c configs/PULC/traffic_sign/inference_traffic_sign.yaml -o Global.infer_imgs="./images/PULC/traffic_sign/"
+```
+
+终端中会输出该文件夹内所有图像的分类结果,如下所示。
+
+```
+100999_83928.jpg: class id(s): [182, 179, 162, 128, 24], score(s): [0.99, 0.01, 0.00, 0.00, 0.00], label_name(s): ['pl110', 'pl100', 'pl120', 'p26', 'pm10']
+99603_17806.jpg: class id(s): [216, 145, 49, 24, 169], score(s): [1.00, 0.00, 0.00, 0.00, 0.00], label_name(s): ['pm20', 'pm30', 'pm40', 'pm10', 'pm15']
+```
+
+输出的 `label_name`可以从`dataset/traffic_sign/report.pdf`文件中查阅对应的图片。
+
+
+
+### 6.3 基于 C++ 预测引擎推理
+
+PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。
+
+
+
+### 6.4 服务化部署
+
+Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)。
+
+PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。
+
+
+
+### 6.5 端侧部署
+
+Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)。
+
+PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。
+
+
+
+### 6.6 Paddle2ONNX 模型转换与预测
+
+Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)。
+
+PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](@shuilong)来完成相应的部署工作。
diff --git a/docs/zh_CN/PULC/PULC_vehicle_attr.md b/docs/zh_CN/PULC/PULC_vehicle_attr.md
new file mode 100644
index 000000000..80e038ac8
--- /dev/null
+++ b/docs/zh_CN/PULC/PULC_vehicle_attr.md
@@ -0,0 +1,414 @@
+# PULC 车辆属性识别模型
+
+------
+
+
+## 目录
+
+- [1. 模型和应用场景介绍](#1)
+- [2. 模型快速体验](#2)
+- [3. 模型训练、评估和预测](#3)
+ - [3.1 环境配置](#3.1)
+ - [3.2 数据准备](#3.2)
+ - [3.2.1 数据集来源](#3.2.1)
+ - [3.2.2 数据集获取](#3.2.2)
+ - [3.3 模型训练](#3.3)
+ - [3.4 模型评估](#3.4)
+ - [3.5 模型预测](#3.5)
+- [4. 模型压缩](#4)
+ - [4.1 SKL-UGI 知识蒸馏](#4.1)
+ - [4.1.1 教师模型训练](#4.1.1)
+ - [4.1.2 蒸馏训练](#4.1.2)
+- [5. 超参搜索](#5)
+- [6. 模型推理部署](#6)
+ - [6.1 推理模型准备](#6.1)
+ - [6.1.1 基于训练得到的权重导出 inference 模型](#6.1.1)
+ - [6.1.2 直接下载 inference 模型](#6.1.2)
+ - [6.2 基于 Python 预测引擎推理](#6.2)
+ - [6.2.1 预测单张图像](#6.2.1)
+ - [6.2.2 基于文件夹的批量预测](#6.2.2)
+ - [6.3 基于 C++ 预测引擎推理](#6.3)
+ - [6.4 服务化部署](#6.4)
+ - [6.5 端侧部署](#6.5)
+ - [6.6 Paddle2ONNX 模型转换与预测](#6.6)
+
+
+
+
+## 1. 模型和应用场景介绍
+
+该案例提供了用户使用 PaddleClas 的超轻量图像分类方案(PULC,Practical Ultra Lightweight Classification)快速构建轻量级、高精度、可落地的车辆属性识别模型。该模型可以广泛应用于车辆识别、道路监控等场景。
+
+下表列出了不同车辆属性识别模型的相关指标,前两行展现了使用 Res2Net200_vd_26w_4s 和 MobileNetV3_large_x1_0 作为 backbone 训练得到的模型的相关指标,第三行至第六行依次展现了替换 backbone 为 PPLCNet_x1_0、使用 SSLD 预训练模型、使用 SSLD 预训练模型 + EDA 策略、使用 SSLD 预训练模型 + EDA 策略 + SKL-UGI 知识蒸馏策略训练得到的模型的相关指标。
+
+
+| 模型 | ma(%) | 延时(ms) | 存储(M) | 策略 |
+|-------|-----------|----------|---------------|---------------|
+| Res2Net200_vd_26w_4s | 91.36 | 66.58 | 293 | 使用ImageNet预训练模型 |
+| ResNet50 | 89.98 | 12.74 | 92 | 使用ImageNet预训练模型 |
+| MobileNetV3_large_x1_0 | 89.77 | 5.59 | 23 | 使用ImageNet预训练模型 |
+| PPLCNet_x1_0 | 89.57 | 2.56 | 8.2 | 使用ImageNet预训练模型 |
+| PPLCNet_x1_0 | 90.07 | 2.56 | 8.2 | 使用SSLD预训练模型 |
+| PPLCNet_x1_0 | 90.59 | 2.56 | 8.2 | 使用SSLD预训练模型+EDA策略|
+| PPLCNet_x1_0 | 90.81 | 2.56 | 8.2 | 使用SSLD预训练模型+EDA策略+SKL-UGI知识蒸馏策略|
+
+从表中可以看出,backbone 为 Res2Net200_vd_26w_4s 时精度较高,但是推理速度较慢。将 backbone 替换为轻量级模型 MobileNetV3_large_x1_0 后,速度可以大幅提升,但是精度下降明显。将 backbone 替换为 PPLCNet_x1_0 时,精度低0.2%,但是速度提升 2 倍左右。在此基础上,使用 SSLD 预训练模型后,在不改变推理速度的前提下,精度可以提升约 0.5%,进一步地,当融合EDA策略后,精度可以再提升 0.52%,最后,在使用 SKL-UGI 知识蒸馏后,精度可以继续提升 0.23%。此时,PPLCNet_x1_0 的精度与 Res2Net200_vd_26w_4s 仅相差0.55%,但是速度快26倍。关于 PULC 的训练方法和推理部署方法将在下面详细介绍。
+
+**备注:**
+
+* 关于PPLCNet的介绍可以参考[PPLCNet介绍](../models/PP-LCNet.md),相关论文可以查阅[PPLCNet paper](https://arxiv.org/abs/2109.15099)。
+
+
+
+
+## 2. 模型快速体验
+
+```
+(pip方式,待补充)
+```
+
+
+
+## 3. 模型训练、评估和预测
+
+
+
+### 3.1 环境配置
+
+* 安装:请先参考 [Paddle 安装教程](../installation/install_paddle.md) 以及 [PaddleClas 安装教程](../installation/install_paddleclas.md) 配置 PaddleClas 运行环境。
+
+
+
+### 3.2 数据准备
+
+
+
+#### 3.2.1 数据集来源
+
+本案例中所使用的数据为[VeRi 数据集](https://www.v7labs.com/open-datasets/veri-dataset)。
+
+
+
+#### 3.2.2 数据集获取
+
+部分数据可视化如下所示。
+
+
+

+
+
+首先从[VeRi数据集官网](https://www.v7labs.com/open-datasets/veri-dataset)中申请并下载数据,放在PaddleClas的`dataset`目录下,数据集目录名为`VeRi`,使用下面的命令进入该文件夹。
+
+```shell
+cd PaddleClas/dataset/VeRi/
+```
+
+然后使用下面的代码转换label(可以在python终端中执行下面的命令,也可以将其写入一个文件,然后使用`python3 convert.py`的方式运行该文件)。
+
+
+```python
+import os
+from xml.dom.minidom import parse
+
+vehicleids = []
+
+def convert_annotation(input_fp, output_fp):
+ in_file = open(input_fp)
+ list_file = open(output_fp, 'w')
+ tree = parse(in_file)
+
+ root = tree.documentElement
+
+ for item in root.getElementsByTagName("Item"):
+ label = ['0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0']
+ if item.hasAttribute("imageName"):
+ name = item.getAttribute("imageName")
+ if item.hasAttribute("vehicleID"):
+ vehicleid = item.getAttribute("vehicleID")
+ if vehicleid not in vehicleids :
+ vehicleids.append(vehicleid)
+ vid = vehicleids.index(vehicleid)
+ if item.hasAttribute("colorID"):
+ colorid = int (item.getAttribute("colorID"))
+ label[colorid-1] = '1'
+ if item.hasAttribute("typeID"):
+ typeid = int (item.getAttribute("typeID"))
+ label[typeid+9] = '1'
+ label = ','.join(label)
+ list_file.write(os.path.join('image_train', name) + "\t" + label + "\n")
+
+ list_file.close()
+
+convert_annotation('train_label.xml', 'train_list.txt') #imagename vehiclenum colorid typeid
+convert_annotation('test_label.xml', 'test_list.txt')
+```
+
+执行上述命令后,`VeRi`目录中具有以下数据:
+
+```
+VeRi
+├── image_train
+│ ├── 0001_c001_00016450_0.jpg
+│ ├── 0001_c001_00016460_0.jpg
+│ ├── 0001_c001_00016470_0.jpg
+...
+├── image_test
+│ ├── 0002_c002_00030600_0.jpg
+│ ├── 0002_c002_00030605_1.jpg
+│ ├── 0002_c002_00030615_1.jpg
+...
+...
+├── train_list.txt
+├── test_list.txt
+├── train_label.xml
+├── test_label.xml
+```
+
+其中`train/`和`test/`分别为训练集和验证集。`train_list.txt`和`test_list.txt`分别为训练集和验证集的转换后用于训练的标签文件。
+
+
+
+
+### 3.3 模型训练
+
+
+在 `ppcls/configs/PULC/vehicle_attr/PPLCNet_x1_0.yaml` 中提供了基于该场景的训练配置,可以通过如下脚本启动训练:
+
+```shell
+export CUDA_VISIBLE_DEVICES=0,1,2,3
+python3 -m paddle.distributed.launch \
+ --gpus="0,1,2,3" \
+ tools/train.py \
+ -c ./ppcls/configs/PULC/vehicle_attr/PPLCNet_x1_0.yaml
+```
+
+验证集的最佳指标在 `90.07%` 左右(数据集较小,一般有0.3%左右的波动)。
+
+
+
+
+### 3.4 模型评估
+
+训练好模型之后,可以通过以下命令实现对模型指标的评估。
+
+```bash
+python3 tools/eval.py \
+ -c ./ppcls/configs/PULC/vehicle_attr/PPLCNet_x1_0.yaml \
+ -o Global.pretrained_model="output/PPLCNet_x1_0/best_model"
+```
+
+其中 `-o Global.pretrained_model="output/PPLCNet_x1_0/best_model"` 指定了当前最佳权重所在的路径,如果指定其他权重,只需替换对应的路径即可。
+
+
+
+### 3.5 模型预测
+
+模型训练完成之后,可以加载训练得到的预训练模型,进行模型预测。在模型库的 `tools/infer.py` 中提供了完整的示例,只需执行下述命令即可完成模型预测:
+
+```bash
+python3 tools/infer.py \
+ -c ./ppcls/configs/PULC/vehicle_attr/PPLCNet_x1_0.yaml \
+ -o Global.pretrained_model=output/DistillationModel/best_model
+```
+
+输出结果如下:
+
+```
+[{'attr': 'Color: (yellow, prob: 0.9893478155136108), Type: (hatchback, prob: 0.9734100103378296)', 'pred': [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], 'file_name': './deploy/images/PULC/vehicle_attr/0002_c002_00030670_0.jpg'}]
+```
+
+**备注:**
+
+* 这里`-o Global.pretrained_model="output/PPLCNet_x1_0/best_model"` 指定了当前最佳权重所在的路径,如果指定其他权重,只需替换对应的路径即可。
+
+* 默认是对 `./deploy/images/PULC/vehicle_attr/0002_c002_00030670_0.jpg` 进行预测,此处也可以通过增加字段 `-o Infer.infer_imgs=xxx` 对其他图片预测。
+
+
+
+## 4. 模型压缩
+
+
+
+### 4.1 SKL-UGI 知识蒸馏
+
+SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考[SKL-UGI 知识蒸馏](@ruoyu)。
+
+
+
+#### 4.1.1 教师模型训练
+
+复用 `ppcls/configs/PULC/vehicle_attr/PPLCNet_x1_0.yaml` 中的超参数,训练教师模型,训练脚本如下:
+
+```shell
+export CUDA_VISIBLE_DEVICES=0,1,2,3
+python3 -m paddle.distributed.launch \
+ --gpus="0,1,2,3" \
+ tools/train.py \
+ -c ./ppcls/configs/PULC/vehicle_attr/PPLCNet_x1_0.yaml \
+ -o Arch.name=ResNet101_vd
+```
+
+验证集的最佳指标为 `91.60%` 左右,当前教师模型最好的权重保存在 `output/ResNet101_vd/best_model.pdparams`。
+
+
+
+#### 4.1.2 蒸馏训练
+
+配置文件`ppcls/configs/PULC/vehicle_attr/PPLCNet_x1_0_distillation.yaml`提供了`SKL-UGI知识蒸馏策略`的配置。该配置将`ResNet101_vd`当作教师模型,`PPLCNet_x1_0`当作学生模型。训练脚本如下:
+
+```shell
+export CUDA_VISIBLE_DEVICES=0,1,2,3
+python3 -m paddle.distributed.launch \
+ --gpus="0,1,2,3" \
+ tools/train.py \
+ -c ./ppcls/configs/PULC/vehicle_attr/PPLCNet_x1_0_distillation.yaml \
+ -o Arch.models.0.Teacher.pretrained=output/ResNet101_vd/best_model
+```
+
+验证集的最佳指标为 `90.81%` 左右,当前模型最好的权重保存在 `output/DistillationModel/best_model_student.pdparams`。
+
+
+
+
+## 5. 超参搜索
+
+在 [3.2 节](#3.2)和 [4.1 节](#4.1)所使用的超参数是根据 PaddleClas 提供的 `SHAS 超参数搜索策略` 搜索得到的,如果希望在自己的数据集上得到更好的结果,可以参考[SHAS 超参数搜索策略](#TODO)来获得更好的训练超参数。
+
+**备注:** 此部分内容是可选内容,搜索过程需要较长的时间,您可以根据自己的硬件情况来选择执行。如果没有更换数据集,可以忽略此节内容。
+
+
+
+## 6. 模型推理部署
+
+
+
+### 6.1 推理模型准备
+
+Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考[Paddle Inference官网教程](https://www.paddlepaddle.org.cn/documentation/docs/zh/guides/infer/inference/inference_cn.html)。
+
+当使用 Paddle Inference 推理时,加载的模型类型为 inference 模型。本案例提供了两种获得 inference 模型的方法,如果希望得到和文档相同的结果,请选择[直接下载 inference 模型](#6.1.2)的方式。
+
+
+
+### 6.1.1 基于训练得到的权重导出 inference 模型
+
+此处,我们提供了将权重和模型转换的脚本,执行该脚本可以得到对应的 inference 模型:
+
+```bash
+python3 tools/export_model.py \
+ -c ./ppcls/configs/PULC/vehicle_attr/PPLCNet_x1_0.yaml \
+ -o Global.pretrained_model=output/DistillationModel/best_model_student \
+ -o Global.save_inference_dir=deploy/models/PPLCNet_x1_0_vehicle_attr_infer
+```
+执行完该脚本后会在 `deploy/models/` 下生成 `PPLCNet_x1_0_vehicle_attr_infer` 文件夹,`models` 文件夹下应有如下文件结构:
+
+```
+├── PPLCNet_x1_0_vehicle_attr_infer
+│ ├── inference.pdiparams
+│ ├── inference.pdiparams.info
+│ └── inference.pdmodel
+```
+
+**备注:** 此处的最佳权重是经过知识蒸馏后的权重路径,如果没有执行知识蒸馏的步骤,最佳模型保存在`output/PPLCNet_x1_0/best_model.pdparams`中。
+
+
+
+### 6.1.2 直接下载 inference 模型
+
+[6.1.1 小节](#6.1.1)提供了导出 inference 模型的方法,此处也提供了该场景可以下载的 inference 模型,可以直接下载体验。
+
+```
+cd deploy/models
+# 下载 inference 模型并解压
+wget https://paddleclas.bj.bcebos.com/models/PULC/vehicle_attr_infer.tar && tar -xf vehicle_attr_infer.tar
+```
+
+解压完毕后,`models` 文件夹下应有如下文件结构:
+
+```
+├── vehicle_attr_infer
+│ ├── inference.pdiparams
+│ ├── inference.pdiparams.info
+│ └── inference.pdmodel
+```
+
+
+
+### 6.2 基于 Python 预测引擎推理
+
+
+
+
+#### 6.2.1 预测单张图像
+
+返回 `deploy` 目录:
+
+```
+cd ../
+```
+
+运行下面的命令,对图像 `./images/PULC/vehicle_attr/0002_c002_00030670_0.jpg` 进行车辆属性识别。
+
+```shell
+# 使用下面的命令使用 GPU 进行预测
+python3.7 python/predict_cls.py -c configs/PULC/vehicle_attr/inference_vehicle_attr.yaml -o Global.use_gpu=True
+# 使用下面的命令使用 CPU 进行预测
+python3.7 python/predict_cls.py -c configs/PULC/vehicle_attr/inference_vehicle_attr.yaml -o Global.use_gpu=False
+```
+
+输出结果如下。
+
+```
+0002_c002_00030670_0.jpg: attributes: Color: (yellow, prob: 0.9893478155136108), Type: (hatchback, prob: 0.97340989112854),
+predict output: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
+```
+
+
+
+#### 6.2.2 基于文件夹的批量预测
+
+如果希望预测文件夹内的图像,可以直接修改配置文件中的 `Global.infer_imgs` 字段,也可以通过下面的 `-o` 参数修改对应的配置。
+
+```shell
+# 使用下面的命令使用 GPU 进行预测,如果希望使用 CPU 预测,可以在命令后面添加 -o Global.use_gpu=False
+python3.7 python/predict_cls.py -c configs/PULC/vehicle_attr/inference_vehicle_attr.yaml -o Global.infer_imgs="./images/PULC/vehicle_attr/"
+```
+
+终端中会输出该文件夹内所有图像的属性识别结果,如下所示。
+
+```
+0002_c002_00030670_0.jpg: attributes: Color: (yellow, prob: 0.9893478155136108), Type: (hatchback, prob: 0.97340989112854),
+predict output: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0]
+0014_c012_00040750_0.jpg: attributes: Color: (red, prob: 0.9998721480369568), Type: (sedan, prob: 0.999976634979248),
+predict output: [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
+```
+
+
+
+### 6.3 基于 C++ 预测引擎推理
+
+PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考[服务器端 C++ 预测](../inference_deployment/cpp_deploy.md)来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考[基于 Visual Studio 2019 Community CMake 编译指南](../inference_deployment/cpp_deploy_on_windows.md)完成相应的预测库编译和模型预测工作。
+
+
+
+### 6.4 服务化部署
+
+Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考[Paddle Serving 代码仓库](https://github.com/PaddlePaddle/Serving)。
+
+PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考[模型服务化部署](../inference_deployment/paddle_serving_deploy.md)来完成相应的部署工作。
+
+
+
+### 6.5 端侧部署
+
+Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考[Paddle Lite 代码仓库](https://github.com/PaddlePaddle/Paddle-Lite)。
+
+PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考[端侧部署](../inference_deployment/paddle_lite_deploy.md)来完成相应的部署工作。
+
+
+
+### 6.6 Paddle2ONNX 模型转换与预测
+
+Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考[Paddle2ONNX 代码仓库](https://github.com/PaddlePaddle/Paddle2ONNX)。
+
+PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考[Paddle2ONNX 模型转换与预测](@shuilong)来完成相应的部署工作。
diff --git a/ppcls/arch/backbone/legendary_models/mobilenet_v3.py b/ppcls/arch/backbone/legendary_models/mobilenet_v3.py
index b7fc7e9f7..3fbf9776b 100644
--- a/ppcls/arch/backbone/legendary_models/mobilenet_v3.py
+++ b/ppcls/arch/backbone/legendary_models/mobilenet_v3.py
@@ -154,7 +154,8 @@ class MobileNetV3(TheseusLayer):
class_expand=LAST_CONV,
dropout_prob=0.2,
return_patterns=None,
- return_stages=None):
+ return_stages=None,
+ **kwargs):
super().__init__()
self.cfg = config
diff --git a/ppcls/arch/backbone/legendary_models/pp_lcnet.py b/ppcls/arch/backbone/legendary_models/pp_lcnet.py
index 64fa61e19..23173b34a 100644
--- a/ppcls/arch/backbone/legendary_models/pp_lcnet.py
+++ b/ppcls/arch/backbone/legendary_models/pp_lcnet.py
@@ -94,13 +94,16 @@ class ConvBNLayer(TheseusLayer):
stride=stride,
padding=(filter_size - 1) // 2,
groups=num_groups,
- weight_attr=ParamAttr(initializer=KaimingNormal(), learning_rate=lr_mult),
+ weight_attr=ParamAttr(
+ initializer=KaimingNormal(), learning_rate=lr_mult),
bias_attr=False)
self.bn = BatchNorm2D(
num_filters,
- weight_attr=ParamAttr(regularizer=L2Decay(0.0), learning_rate=lr_mult),
- bias_attr=ParamAttr(regularizer=L2Decay(0.0), learning_rate=lr_mult))
+ weight_attr=ParamAttr(
+ regularizer=L2Decay(0.0), learning_rate=lr_mult),
+ bias_attr=ParamAttr(
+ regularizer=L2Decay(0.0), learning_rate=lr_mult))
self.hardswish = nn.Hardswish()
def forward(self, x):
@@ -128,8 +131,7 @@ class DepthwiseSeparable(TheseusLayer):
num_groups=num_channels,
lr_mult=lr_mult)
if use_se:
- self.se = SEModule(num_channels,
- lr_mult=lr_mult)
+ self.se = SEModule(num_channels, lr_mult=lr_mult)
self.pw_conv = ConvBNLayer(
num_channels=num_channels,
filter_size=1,
@@ -189,7 +191,8 @@ class PPLCNet(TheseusLayer):
lr_mult_list=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
use_last_conv=True,
return_patterns=None,
- return_stages=None):
+ return_stages=None,
+ **kwargs):
super().__init__()
self.scale = scale
self.class_expand = class_expand
@@ -271,7 +274,8 @@ class PPLCNet(TheseusLayer):
self.avg_pool = AdaptiveAvgPool2D(1)
if self.use_last_conv:
self.last_conv = Conv2D(
- in_channels=make_divisible(NET_CONFIG["blocks6"][-1][2] * scale),
+ in_channels=make_divisible(NET_CONFIG["blocks6"][-1][2] *
+ scale),
out_channels=self.class_expand,
kernel_size=1,
stride=1,
@@ -282,7 +286,8 @@ class PPLCNet(TheseusLayer):
else:
self.last_conv = None
self.flatten = nn.Flatten(start_axis=1, stop_axis=-1)
- self.fc = Linear(self.class_expand if self.use_last_conv else NET_CONFIG["blocks6"][-1][2], class_num)
+ self.fc = Linear(self.class_expand if self.use_last_conv else
+ NET_CONFIG["blocks6"][-1][2], class_num)
super().init_res(
stages_pattern,
diff --git a/ppcls/arch/backbone/model_zoo/res2net_vd.py b/ppcls/arch/backbone/model_zoo/res2net_vd.py
index 511fbaa59..2139e1988 100644
--- a/ppcls/arch/backbone/model_zoo/res2net_vd.py
+++ b/ppcls/arch/backbone/model_zoo/res2net_vd.py
@@ -165,7 +165,8 @@ class BottleneckBlock(nn.Layer):
class Res2Net_vd(nn.Layer):
- def __init__(self, layers=50, scales=4, width=26, class_num=1000):
+ def __init__(self, layers=50, scales=4, width=26, class_num=1000,
+ **kwargs):
super(Res2Net_vd, self).__init__()
self.layers = layers
diff --git a/ppcls/configs/PULC/traffic_sign/MobileNetV3_large_x1_0.yaml b/ppcls/configs/PULC/traffic_sign/MobileNetV3_large_x1_0.yaml
new file mode 100644
index 000000000..e76db0479
--- /dev/null
+++ b/ppcls/configs/PULC/traffic_sign/MobileNetV3_large_x1_0.yaml
@@ -0,0 +1,132 @@
+# global configs
+Global:
+ checkpoints: null
+ pretrained_model: null
+ output_dir: ./output/
+ device: gpu
+ save_interval: 1
+ eval_during_train: True
+ eval_interval: 1
+ epochs: 10
+ print_batch_step: 10
+ use_visualdl: False
+ # used for static mode and model export
+ image_shape: [3, 224, 224]
+ save_inference_dir: ./inference
+
+# model architecture
+Arch:
+ name: MobileNetV3_large_x1_0
+ class_num: 232
+ pretrained: True
+
+# loss function config for traing/eval process
+Loss:
+ Train:
+ - CELoss:
+ weight: 1.0
+ epsilon: 0.1
+ Eval:
+ - CELoss:
+ weight: 1.0
+
+
+Optimizer:
+ name: Momentum
+ momentum: 0.9
+ lr:
+ name: Cosine
+ learning_rate: 0.01
+ warmup_epoch: 5
+ regularizer:
+ name: 'L2'
+ coeff: 0.00002
+
+
+# data loader for train and eval
+DataLoader:
+ Train:
+ dataset:
+ name: ImageNetDataset
+ image_root: ./dataset/
+ cls_label_path: ./dataset/traffic_sign/label_list_train.txt
+ delimiter: "\t"
+ transform_ops:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - RandCropImage:
+ size: 224
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+
+ sampler:
+ name: DistributedBatchSampler
+ batch_size: 128
+ drop_last: False
+ shuffle: True
+ loader:
+ num_workers: 8
+ use_shared_memory: True
+
+ Eval:
+ dataset:
+ name: ImageNetDataset
+ image_root: ./dataset/
+ cls_label_path: ./dataset/traffic_sign/label_list_test.txt
+ delimiter: "\t"
+ transform_ops:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ resize_short: 256
+ - CropImage:
+ size: 224
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ sampler:
+ name: DistributedBatchSampler
+ batch_size: 128
+ drop_last: False
+ shuffle: False
+ loader:
+ num_workers: 8
+ use_shared_memory: True
+
+Infer:
+ infer_imgs: docs/images/inference_deployment/whl_demo.jpg
+ batch_size: 10
+ transforms:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ resize_short: 256
+ - CropImage:
+ size: 224
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ - ToCHWImage:
+ PostProcess:
+ name: Topk
+ topk: 5
+ class_id_map_file: dataset/traffic_sign/label_name_id.txt
+
+Metric:
+ Train:
+ - TopkAcc:
+ topk: [1, 5]
+ Eval:
+ - TopkAcc:
+ topk: [1, 5]
+
diff --git a/ppcls/configs/PULC/traffic_sign/PPLCNet_x1_0.yaml b/ppcls/configs/PULC/traffic_sign/PPLCNet_x1_0.yaml
new file mode 100644
index 000000000..025d7ef2e
--- /dev/null
+++ b/ppcls/configs/PULC/traffic_sign/PPLCNet_x1_0.yaml
@@ -0,0 +1,148 @@
+# global configs
+Global:
+ checkpoints: null
+ pretrained_model: null
+ output_dir: ./output/
+ device: gpu
+ save_interval: 1
+ eval_during_train: True
+ eval_interval: 1
+ start_eval_epoch: 0
+ epochs: 10
+ print_batch_step: 10
+ use_visualdl: False
+ # used for static mode and model export
+ image_shape: [3, 224, 224]
+ save_inference_dir: ./inference
+ # training model under @to_static
+ to_static: False
+ use_dali: False
+
+
+# model architecture
+Arch:
+ name: PPLCNet_x1_0
+ class_num: 232
+ pretrained: True
+ use_ssld: True
+
+# loss function config for traing/eval process
+Loss:
+ Train:
+ - CELoss:
+ weight: 1.0
+ Eval:
+ - CELoss:
+ weight: 1.0
+
+
+Optimizer:
+ name: Momentum
+ momentum: 0.9
+ lr:
+ name: Cosine
+ learning_rate: 0.02
+ warmup_epoch: 5
+ regularizer:
+ name: 'L2'
+ coeff: 0.00004
+
+
+# data loader for train and eval
+DataLoader:
+ Train:
+ dataset:
+ name: ImageNetDataset
+ image_root: ./dataset/
+ cls_label_path: ./dataset/tt100k_clas_v2/label_list_train.txt
+ delimiter: "\t"
+ transform_ops:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - RandCropImage:
+ size: 224
+ - TimmAutoAugment:
+ prob: 0.5
+ config_str: rand-m9-mstd0.5-inc1
+ interpolation: bicubic
+ img_size: 224
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ - RandomErasing:
+ EPSILON: 0.0
+ sl: 0.02
+ sh: 1.0/3.0
+ r1: 0.3
+ attempt: 10
+ use_log_aspect: True
+ mode: pixel
+ sampler:
+ name: DistributedBatchSampler
+ batch_size: 64
+ drop_last: False
+ shuffle: True
+ loader:
+ num_workers: 8
+ use_shared_memory: True
+
+ Eval:
+ dataset:
+ name: ImageNetDataset
+ image_root: ./dataset/
+ cls_label_path: ./dataset/traffic_sign/label_list_test.txt
+ delimiter: "\t"
+ transform_ops:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ resize_short: 256
+ - CropImage:
+ size: 224
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ sampler:
+ name: DistributedBatchSampler
+ batch_size: 128
+ drop_last: False
+ shuffle: False
+ loader:
+ num_workers: 8
+ use_shared_memory: True
+
+Infer:
+ infer_imgs: deploy/images/PULC/traffic_sign/99603_17806.jpg
+ batch_size: 10
+ transforms:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ resize_short: 256
+ - CropImage:
+ size: 224
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ - ToCHWImage:
+ PostProcess:
+ name: Topk
+ topk: 5
+ class_id_map_file: dataset/traffic_sign/label_name_id.txt
+
+Metric:
+ Train:
+ - TopkAcc:
+ topk: [1, 5]
+ Eval:
+ - TopkAcc:
+ topk: [1, 5]
diff --git a/ppcls/configs/PULC/traffic_sign/PPLCNet_x1_0_distillation.yaml b/ppcls/configs/PULC/traffic_sign/PPLCNet_x1_0_distillation.yaml
new file mode 100644
index 000000000..9be452d46
--- /dev/null
+++ b/ppcls/configs/PULC/traffic_sign/PPLCNet_x1_0_distillation.yaml
@@ -0,0 +1,172 @@
+# global configs
+Global:
+ checkpoints: null
+ pretrained_model: null
+ output_dir: ./output/
+ device: gpu
+ save_interval: 1
+ eval_during_train: True
+ eval_interval: 1
+ epochs: 10
+ print_batch_step: 10
+ use_visualdl: False
+ # used for static mode and model export
+ image_shape: [3, 224, 224]
+ save_inference_dir: ./inference
+ # training model under @to_static
+ to_static: False
+ use_dali: False
+
+# mixed precision training
+AMP:
+ scale_loss: 128.0
+ use_dynamic_loss_scaling: True
+ # O1: mixed fp16
+ level: O1
+
+# model architecture
+Arch:
+ name: "DistillationModel"
+ class_num: &class_num 232
+ # if not null, its lengths should be same as models
+ pretrained_list:
+ # if not null, its lengths should be same as models
+ freeze_params_list:
+ - True
+ - False
+ models:
+ - Teacher:
+ name: ResNet101_vd
+ class_num: *class_num
+ pretrained: False
+ - Student:
+ name: PPLCNet_x1_0
+ class_num: *class_num
+ pretrained: True
+ use_ssld: True
+
+ infer_model_name: "Student"
+
+# loss function config for traing/eval process
+Loss:
+ Train:
+ - DistillationDMLLoss:
+ weight: 1.0
+ model_name_pairs:
+ - ["Student", "Teacher"]
+ Eval:
+ - CELoss:
+ weight: 1.0
+
+
+Optimizer:
+ name: Momentum
+ momentum: 0.9
+ lr:
+ name: Cosine
+ learning_rate: 0.01
+ warmup_epoch: 5
+ regularizer:
+ name: 'L2'
+ coeff: 0.00004
+
+
+# data loader for train and eval
+DataLoader:
+ Train:
+ dataset:
+ name: ImageNetDataset
+ image_root: ./dataset/
+ cls_label_path: ./dataset/traffic_sign/label_list_train_for_distillation.txt
+ delimiter: "\t"
+ transform_ops:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - RandCropImage:
+ size: 224
+ - TimmAutoAugment:
+ prob: 0.0
+ config_str: rand-m9-mstd0.5-inc1
+ interpolation: bicubic
+ img_size: 224
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ - RandomErasing:
+ EPSILON: 0.0
+ sl: 0.02
+ sh: 1.0/3.0
+ r1: 0.3
+ attempt: 10
+ use_log_aspect: True
+ mode: pixel
+ sampler:
+ name: DistributedBatchSampler
+ batch_size: 64
+ drop_last: False
+ shuffle: True
+ loader:
+ num_workers: 8
+ use_shared_memory: True
+
+ Eval:
+ dataset:
+ name: ImageNetDataset
+ image_root: ./dataset/
+ cls_label_path: ./dataset/traffic_sign/label_list_test.txt
+ delimiter: "\t"
+ transform_ops:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ resize_short: 256
+ - CropImage:
+ size: 224
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ sampler:
+ name: DistributedBatchSampler
+ batch_size: 128
+ drop_last: False
+ shuffle: False
+ loader:
+ num_workers: 8
+ use_shared_memory: True
+
+Infer:
+ infer_imgs: docs/images/inference_deployment/whl_demo.jpg
+ batch_size: 10
+ transforms:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ resize_short: 256
+ - CropImage:
+ size: 224
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ - ToCHWImage:
+ PostProcess:
+ name: Topk
+ topk: 5
+ class_id_map_file: dataset/traffic_sign/label_name_id.txt
+
+Metric:
+ Train:
+ - DistillationTopkAcc:
+ model_key: "Student"
+ topk: [1, 5]
+ Eval:
+ - TopkAcc:
+ topk: [1, 5]
diff --git a/ppcls/configs/PULC/traffic_sign/PPLCNet_x1_0_search.yaml b/ppcls/configs/PULC/traffic_sign/PPLCNet_x1_0_search.yaml
new file mode 100644
index 000000000..6c622b0e0
--- /dev/null
+++ b/ppcls/configs/PULC/traffic_sign/PPLCNet_x1_0_search.yaml
@@ -0,0 +1,149 @@
+# global configs
+Global:
+ checkpoints: null
+ pretrained_model: null
+ output_dir: ./output/
+ device: gpu
+ save_interval: 1
+ eval_during_train: True
+ eval_interval: 1
+ start_eval_epoch: 0
+ epochs: 10
+ print_batch_step: 10
+ use_visualdl: False
+ # used for static mode and model export
+ image_shape: [3, 224, 224]
+ save_inference_dir: ./inference
+ # training model under @to_static
+ to_static: False
+ use_dali: False
+
+
+# model architecture
+Arch:
+ name: PPLCNet_x1_0
+ class_num: 232
+ pretrained: True
+ # use_ssld: True
+
+# loss function config for traing/eval process
+Loss:
+ Train:
+ - CELoss:
+ weight: 1.0
+ Eval:
+ - CELoss:
+ weight: 1.0
+
+
+Optimizer:
+ name: Momentum
+ momentum: 0.9
+ lr:
+ name: Cosine
+ learning_rate: 0.01
+ warmup_epoch: 5
+ regularizer:
+ name: 'L2'
+ coeff: 0.00004
+
+
+# data loader for train and eval
+DataLoader:
+ Train:
+ dataset:
+ name: ImageNetDataset
+ image_root: ./dataset/
+ cls_label_path: ./dataset/traffic_sign/label_list_train.txt
+ delimiter: "\t"
+ transform_ops:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - RandCropImage:
+ size: 224
+ - TimmAutoAugment:
+ prob: 0.0
+ config_str: rand-m9-mstd0.5-inc1
+ interpolation: bicubic
+ img_size: 224
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ - RandomErasing:
+ EPSILON: 0.0
+ sl: 0.02
+ sh: 1.0/3.0
+ r1: 0.3
+ attempt: 10
+ use_log_aspect: True
+ mode: pixel
+ sampler:
+ name: DistributedBatchSampler
+ batch_size: 64
+ drop_last: False
+ shuffle: True
+ loader:
+ num_workers: 8
+ use_shared_memory: True
+
+ Eval:
+ dataset:
+ name: ImageNetDataset
+ image_root: ./dataset/
+ cls_label_path: ./dataset/traffic_sign/label_list_test.txt
+ delimiter: "\t"
+ transform_ops:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ resize_short: 256
+ - CropImage:
+ size: 224
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ sampler:
+ name: DistributedBatchSampler
+ batch_size: 128
+ drop_last: False
+ shuffle: False
+ loader:
+ num_workers: 8
+ use_shared_memory: True
+
+Infer:
+ # infer_imgs: dataset/traffic_sign_demo/
+ infer_imgs: dataset/tt100k_clas_v2/test/
+ batch_size: 10
+ transforms:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ resize_short: 256
+ - CropImage:
+ size: 224
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ - ToCHWImage:
+ PostProcess:
+ name: Topk
+ topk: 5
+ class_id_map_file: dataset/traffic_sign/label_name_id.txt
+
+Metric:
+ Train:
+ - TopkAcc:
+ topk: [1, 5]
+ Eval:
+ - TopkAcc:
+ topk: [1, 5]
diff --git a/ppcls/configs/PULC/traffic_sign/SwinTransformer_tiny_patch4_window7_224.yaml b/ppcls/configs/PULC/traffic_sign/SwinTransformer_tiny_patch4_window7_224.yaml
new file mode 100644
index 000000000..5d295e28c
--- /dev/null
+++ b/ppcls/configs/PULC/traffic_sign/SwinTransformer_tiny_patch4_window7_224.yaml
@@ -0,0 +1,170 @@
+# global configs
+Global:
+ checkpoints: null
+ pretrained_model: null
+ output_dir: ./output/
+ device: gpu
+ save_interval: 1
+ eval_during_train: True
+ eval_interval: 1
+ start_eval_epoch: 0
+ epochs: 10
+ print_batch_step: 10
+ use_visualdl: False
+ # used for static mode and model export
+ image_shape: [3, 224, 224]
+ save_inference_dir: ./inference
+ # training model under @to_static
+ to_static: False
+ use_dali: False
+
+# mixed precision training
+AMP:
+ scale_loss: 128.0
+ use_dynamic_loss_scaling: True
+ # O1: mixed fp16
+ level: O1
+
+# model architecture
+Arch:
+ name: SwinTransformer_tiny_patch4_window7_224
+ class_num: 232
+ pretrained: True
+
+# loss function config for traing/eval process
+Loss:
+ Train:
+ - CELoss:
+ weight: 1.0
+ epsilon: 0.1
+ Eval:
+ - CELoss:
+ weight: 1.0
+
+Optimizer:
+ name: AdamW
+ beta1: 0.9
+ beta2: 0.999
+ epsilon: 1e-8
+ weight_decay: 0.05
+ no_weight_decay_name: absolute_pos_embed relative_position_bias_table .bias norm
+ one_dim_param_no_weight_decay: True
+ lr:
+ name: Cosine
+ learning_rate: 2e-4
+ eta_min: 2e-6
+ warmup_epoch: 5
+ warmup_start_lr: 2e-7
+
+
+# data loader for train and eval
+DataLoader:
+ Train:
+ dataset:
+ name: ImageNetDataset
+ image_root: ./dataset/
+ cls_label_path: ./dataset/traffic_sign/label_list_train.txt
+ delimiter: "\t"
+ transform_ops:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - RandCropImage:
+ size: 224
+ interpolation: bicubic
+ backend: pil
+ - RandFlipImage:
+ flip_code: 1
+ - TimmAutoAugment:
+ config_str: rand-m9-mstd0.5-inc1
+ interpolation: bicubic
+ img_size: 224
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ - RandomErasing:
+ EPSILON: 0.25
+ sl: 0.02
+ sh: 1.0/3.0
+ r1: 0.3
+ attempt: 10
+ use_log_aspect: True
+ mode: pixel
+ batch_transform_ops:
+ - OpSampler:
+ MixupOperator:
+ alpha: 0.8
+ prob: 0.5
+ CutmixOperator:
+ alpha: 1.0
+ prob: 0.5
+ sampler:
+ name: DistributedBatchSampler
+ batch_size: 128
+ drop_last: False
+ shuffle: True
+ loader:
+ num_workers: 8
+ use_shared_memory: True
+
+ Eval:
+ dataset:
+ name: ImageNetDataset
+ image_root: ./dataset/
+ cls_label_path: ./dataset/tt100k_clas_v2/label_list_test.txt
+ delimiter: "\t"
+ transform_ops:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ resize_short: 256
+ - CropImage:
+ size: 224
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ sampler:
+ name: DistributedBatchSampler
+ batch_size: 64
+ drop_last: False
+ shuffle: False
+ loader:
+ num_workers: 8
+ use_shared_memory: True
+
+Infer:
+ infer_imgs: docs/images/inference_deployment/whl_demo.jpg
+ batch_size: 10
+ transforms:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ resize_short: 256
+ - CropImage:
+ size: 224
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ - ToCHWImage:
+ PostProcess:
+ name: Topk
+ topk: 5
+ class_id_map_file: dataset/traffic_sign/label_name_id.txt
+
+Metric:
+ Train:
+ - TopkAcc:
+ topk: [1, 5]
+ Eval:
+ - TopkAcc:
+ topk: [1, 5]
+
+
diff --git a/ppcls/configs/PULC/traffic_sign/search.yaml b/ppcls/configs/PULC/traffic_sign/search.yaml
new file mode 100644
index 000000000..755ed2016
--- /dev/null
+++ b/ppcls/configs/PULC/traffic_sign/search.yaml
@@ -0,0 +1,40 @@
+base_config_file: ppcls/configs/PULC/traffic_sign/PPLCNet_x1_0_search.yaml
+distill_config_file: ppcls/configs/PULC/traffic_sign/PPLCNet_x1_0_distillation.yaml
+
+gpus: 0,1,2,3
+output_dir: output/search_traffic_sign
+search_times: 1
+search_dict:
+ - search_key: lrs
+ replace_config:
+ - Optimizer.lr.learning_rate
+ search_values: [0.0075, 0.01, 0.0125]
+ - search_key: resolutions
+ replace_config:
+ - DataLoader.Train.dataset.transform_ops.1.RandCropImage.size
+ - DataLoader.Train.dataset.transform_ops.2.TimmAutoAugment.img_size
+ search_values: [176, 192, 224]
+ - search_key: ra_probs
+ replace_config:
+ - DataLoader.Train.dataset.transform_ops.2.TimmAutoAugment.prob
+ search_values: [0.0, 0.1, 0.5]
+ - search_key: re_probs
+ replace_config:
+ - DataLoader.Train.dataset.transform_ops.4.RandomErasing.EPSILON
+ search_values: [0.0, 0.1, 0.5]
+ - search_key: lr_mult_list
+ replace_config:
+ - Arch.lr_mult_list
+ search_values:
+ - [0.0, 0.2, 0.4, 0.6, 0.8, 1.0]
+ - [0.0, 0.4, 0.4, 0.8, 0.8, 1.0]
+ - [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
+teacher:
+ rm_keys:
+ - Arch.lr_mult_list
+ search_values:
+ - ResNet101_vd
+ - ResNet50_vd
+final_replace:
+ Arch.lr_mult_list: Arch.models.1.Student.lr_mult_list
+
diff --git a/ppcls/configs/PULC/vehicle_attr/MobileNetV3_large_x1_0.yaml b/ppcls/configs/PULC/vehicle_attr/MobileNetV3_large_x1_0.yaml
new file mode 100644
index 000000000..52f5dd8e8
--- /dev/null
+++ b/ppcls/configs/PULC/vehicle_attr/MobileNetV3_large_x1_0.yaml
@@ -0,0 +1,115 @@
+# global configs
+Global:
+ checkpoints: null
+ pretrained_model: null
+ output_dir: "./output/"
+ device: "gpu"
+ save_interval: 5
+ eval_during_train: True
+ eval_interval: 1
+ epochs: 30
+ print_batch_step: 20
+ use_visualdl: False
+ # used for static mode and model export
+ image_shape: [3, 192, 256]
+ save_inference_dir: "./inference"
+ use_multilabel: True
+
+# model architecture
+Arch:
+ name: "MobileNetV3_large_x1_0"
+ pretrained: True
+ class_num: 19
+ infer_add_softmax: False
+
+# loss function config for traing/eval process
+Loss:
+ Train:
+ - MultiLabelLoss:
+ weight: 1.0
+ weight_ratio: True
+ size_sum: True
+ Eval:
+ - MultiLabelLoss:
+ weight: 1.0
+ weight_ratio: True
+ size_sum: True
+
+Optimizer:
+ name: Momentum
+ momentum: 0.9
+ lr:
+ name: Cosine
+ learning_rate: 0.01
+ warmup_epoch: 5
+ regularizer:
+ name: 'L2'
+ coeff: 0.0005
+
+# data loader for train and eval
+DataLoader:
+ Train:
+ dataset:
+ name: MultiLabelDataset
+ image_root: "dataset/VeRi/"
+ cls_label_path: "dataset/VeRi/train_list.txt"
+ label_ratio: True
+ transform_ops:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ size: [256, 192]
+ - Padv2:
+ size: [276, 212]
+ pad_mode: 1
+ fill_value: 0
+ - RandomCropImage:
+ size: [256, 192]
+ - RandFlipImage:
+ flip_code: 1
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ sampler:
+ name: DistributedBatchSampler
+ batch_size: 64
+ drop_last: True
+ shuffle: True
+ loader:
+ num_workers: 8
+ use_shared_memory: True
+ Eval:
+ dataset:
+ name: MultiLabelDataset
+ image_root: "dataset/VeRi/"
+ cls_label_path: "dataset/VeRi/test_list.txt"
+ label_ratio: True
+ transform_ops:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ size: [256, 192]
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ sampler:
+ name: DistributedBatchSampler
+ batch_size: 64
+ drop_last: False
+ shuffle: False
+ loader:
+ num_workers: 8
+ use_shared_memory: True
+
+
+Metric:
+ Eval:
+ - ATTRMetric:
+
+
diff --git a/ppcls/configs/PULC/vehicle_attr/PPLCNet_x1_0.yaml b/ppcls/configs/PULC/vehicle_attr/PPLCNet_x1_0.yaml
new file mode 100644
index 000000000..508f3a932
--- /dev/null
+++ b/ppcls/configs/PULC/vehicle_attr/PPLCNet_x1_0.yaml
@@ -0,0 +1,149 @@
+# global configs
+Global:
+ checkpoints: null
+ pretrained_model: null
+ output_dir: "./output/"
+ device: "gpu"
+ save_interval: 5
+ eval_during_train: True
+ eval_interval: 1
+ epochs: 30
+ print_batch_step: 20
+ use_visualdl: False
+ # used for static mode and model export
+ image_shape: [3, 192, 256]
+ save_inference_dir: "./inference"
+ use_multilabel: True
+
+# model architecture
+Arch:
+ name: "PPLCNet_x1_0"
+ pretrained: True
+ class_num: 19
+ use_ssld: True
+ lr_mult_list: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
+ infer_add_softmax: False
+
+# loss function config for traing/eval process
+Loss:
+ Train:
+ - MultiLabelLoss:
+ weight: 1.0
+ weight_ratio: True
+ size_sum: True
+ Eval:
+ - MultiLabelLoss:
+ weight: 1.0
+ weight_ratio: True
+ size_sum: True
+
+Optimizer:
+ name: Momentum
+ momentum: 0.9
+ lr:
+ name: Cosine
+ learning_rate: 0.0125
+ warmup_epoch: 5
+ regularizer:
+ name: 'L2'
+ coeff: 0.0005
+
+# data loader for train and eval
+DataLoader:
+ Train:
+ dataset:
+ name: MultiLabelDataset
+ image_root: "dataset/VeRi/"
+ cls_label_path: "dataset/VeRi/train_list.txt"
+ label_ratio: True
+ transform_ops:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ size: [256, 192]
+ - TimmAutoAugment:
+ prob: 0.0
+ config_str: rand-m9-mstd0.5-inc1
+ interpolation: bicubic
+ img_size: [256, 192]
+ - Padv2:
+ size: [276, 212]
+ pad_mode: 1
+ fill_value: 0
+ - RandomCropImage:
+ size: [256, 192]
+ - RandFlipImage:
+ flip_code: 1
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ - RandomErasing:
+ EPSILON: 0.5
+ sl: 0.02
+ sh: 1.0/3.0
+ r1: 0.3
+ attempt: 10
+ use_log_aspect: True
+ mode: pixel
+ sampler:
+ name: DistributedBatchSampler
+ batch_size: 64
+ drop_last: True
+ shuffle: True
+ loader:
+ num_workers: 8
+ use_shared_memory: True
+ Eval:
+ dataset:
+ name: MultiLabelDataset
+ image_root: "dataset/VeRi/"
+ cls_label_path: "dataset/VeRi/test_list.txt"
+ label_ratio: True
+ transform_ops:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ size: [256, 192]
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ sampler:
+ name: DistributedBatchSampler
+ batch_size: 128
+ drop_last: False
+ shuffle: False
+ loader:
+ num_workers: 8
+ use_shared_memory: True
+
+Infer:
+ infer_imgs: ./deploy/images/PULC/vehicle_attr/0002_c002_00030670_0.jpg
+ batch_size: 10
+ transforms:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ size: [256, 192]
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ - ToCHWImage:
+ PostProcess:
+ name: VehicleAttribute
+ color_threshold: 0.5
+ type_threshold: 0.5
+
+Metric:
+ Eval:
+ - ATTRMetric:
+
+
diff --git a/ppcls/configs/PULC/vehicle_attr/PPLCNet_x1_0_distillation.yaml b/ppcls/configs/PULC/vehicle_attr/PPLCNet_x1_0_distillation.yaml
new file mode 100644
index 000000000..c5144f373
--- /dev/null
+++ b/ppcls/configs/PULC/vehicle_attr/PPLCNet_x1_0_distillation.yaml
@@ -0,0 +1,150 @@
+# global configs
+Global:
+ checkpoints: null
+ pretrained_model: null
+ output_dir: "./output/"
+ device: "gpu"
+ save_interval: 5
+ eval_during_train: True
+ eval_interval: 1
+ epochs: 30
+ print_batch_step: 20
+ use_visualdl: False
+ # used for static mode and model export
+ image_shape: [3, 192, 256]
+ save_inference_dir: "./inference"
+ use_multilabel: True
+
+# model architecture
+Arch:
+ name: "DistillationModel"
+ class_num: &class_num 19
+ # if not null, its lengths should be same as models
+ pretrained_list:
+ # if not null, its lengths should be same as models
+ freeze_params_list:
+ - True
+ - False
+ use_ssld: True
+ models:
+ - Teacher:
+ name: ResNet101_vd
+ class_num: *class_num
+ - Student:
+ name: PPLCNet_x1_0
+ class_num: *class_num
+ pretrained: True
+ use_ssld: True
+
+# loss function config for traing/eval process
+Loss:
+ Train:
+ - DistillationMultiLabelLoss:
+ weight: 1.0
+ model_names: ["Student"]
+ weight_ratio: True
+ size_sum: True
+ - DistillationDMLLoss:
+ weight: 1.0
+ weight_ratio: True
+ sum_across_class_dim: False
+ model_name_pairs:
+ - ["Student", "Teacher"]
+
+ Eval:
+ - MultiLabelLoss:
+ weight: 1.0
+ weight_ratio: True
+ size_sum: True
+
+Optimizer:
+ name: Momentum
+ momentum: 0.9
+ lr:
+ name: Cosine
+ learning_rate: 0.01
+ warmup_epoch: 5
+ regularizer:
+ name: 'L2'
+ coeff: 0.0005
+
+# data loader for train and eval
+DataLoader:
+ Train:
+ dataset:
+ name: MultiLabelDataset
+ image_root: "dataset/VeRi/"
+ cls_label_path: "dataset/VeRi/train_list.txt"
+ label_ratio: True
+ transform_ops:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ size: [256, 192]
+ - TimmAutoAugment:
+ prob: 0.0
+ config_str: rand-m9-mstd0.5-inc1
+ interpolation: bicubic
+ img_size: [256, 192]
+ - Padv2:
+ size: [276, 212]
+ pad_mode: 1
+ fill_value: 0
+ - RandomCropImage:
+ size: [256, 192]
+ - RandFlipImage:
+ flip_code: 1
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ - RandomErasing:
+ EPSILON: 0.0
+ sl: 0.02
+ sh: 1.0/3.0
+ r1: 0.3
+ attempt: 10
+ use_log_aspect: True
+ mode: pixel
+ sampler:
+ name: DistributedBatchSampler
+ batch_size: 64
+ drop_last: True
+ shuffle: True
+ loader:
+ num_workers: 8
+ use_shared_memory: True
+ Eval:
+ dataset:
+ name: MultiLabelDataset
+ image_root: "dataset/VeRi/"
+ cls_label_path: "dataset/VeRi/test_list.txt"
+ label_ratio: True
+ transform_ops:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ size: [256, 192]
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ sampler:
+ name: DistributedBatchSampler
+ batch_size: 128
+ drop_last: False
+ shuffle: False
+ loader:
+ num_workers: 8
+ use_shared_memory: True
+
+
+Metric:
+ Eval:
+ - ATTRMetric:
+
+
diff --git a/ppcls/configs/PULC/vehicle_attr/PPLCNet_x1_0_search.yaml b/ppcls/configs/PULC/vehicle_attr/PPLCNet_x1_0_search.yaml
new file mode 100644
index 000000000..5f84c2a65
--- /dev/null
+++ b/ppcls/configs/PULC/vehicle_attr/PPLCNet_x1_0_search.yaml
@@ -0,0 +1,129 @@
+# global configs
+Global:
+ checkpoints: null
+ pretrained_model: null
+ output_dir: "./output/"
+ device: "gpu"
+ save_interval: 5
+ eval_during_train: True
+ eval_interval: 1
+ epochs: 30
+ print_batch_step: 20
+ use_visualdl: False
+ # used for static mode and model export
+ image_shape: [3, 192, 256]
+ save_inference_dir: "./inference"
+ use_multilabel: True
+
+# model architecture
+Arch:
+ name: "PPLCNet_x1_0"
+ pretrained: True
+ use_ssld: True
+ class_num: 19
+ infer_add_softmax: False
+
+# loss function config for traing/eval process
+Loss:
+ Train:
+ - MultiLabelLoss:
+ weight: 1.0
+ weight_ratio: True
+ size_sum: True
+ Eval:
+ - MultiLabelLoss:
+ weight: 1.0
+ weight_ratio: True
+ size_sum: True
+
+Optimizer:
+ name: Momentum
+ momentum: 0.9
+ lr:
+ name: Cosine
+ learning_rate: 0.01
+ warmup_epoch: 5
+ regularizer:
+ name: 'L2'
+ coeff: 0.0005
+
+# data loader for train and eval
+DataLoader:
+ Train:
+ dataset:
+ name: MultiLabelDataset
+ image_root: "dataset/VeRi/"
+ cls_label_path: "dataset/VeRi/train_list.txt"
+ label_ratio: True
+ transform_ops:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ size: [256, 192]
+ - TimmAutoAugment:
+ prob: 0.0
+ config_str: rand-m9-mstd0.5-inc1
+ interpolation: bicubic
+ img_size: [256, 192]
+ - Padv2:
+ size: [276, 212]
+ pad_mode: 1
+ fill_value: 0
+ - RandomCropImage:
+ size: [256, 192]
+ - RandFlipImage:
+ flip_code: 1
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ - RandomErasing:
+ EPSILON: 0.0
+ sl: 0.02
+ sh: 1.0/3.0
+ r1: 0.3
+ attempt: 10
+ use_log_aspect: True
+ mode: pixel
+ sampler:
+ name: DistributedBatchSampler
+ batch_size: 64
+ drop_last: True
+ shuffle: True
+ loader:
+ num_workers: 8
+ use_shared_memory: True
+ Eval:
+ dataset:
+ name: MultiLabelDataset
+ image_root: "dataset/VeRi/"
+ cls_label_path: "dataset/VeRi/test_list.txt"
+ label_ratio: True
+ transform_ops:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ size: [256, 192]
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ sampler:
+ name: DistributedBatchSampler
+ batch_size: 128
+ drop_last: False
+ shuffle: False
+ loader:
+ num_workers: 8
+ use_shared_memory: True
+
+
+Metric:
+ Eval:
+ - ATTRMetric:
+
+
diff --git a/ppcls/configs/PULC/vehicle_attr/Res2Net200_vd_26w_4s.yaml b/ppcls/configs/PULC/vehicle_attr/Res2Net200_vd_26w_4s.yaml
new file mode 100644
index 000000000..c6618f960
--- /dev/null
+++ b/ppcls/configs/PULC/vehicle_attr/Res2Net200_vd_26w_4s.yaml
@@ -0,0 +1,122 @@
+# global configs
+Global:
+ checkpoints: null
+ pretrained_model: null
+ output_dir: "./output/mo"
+ device: "gpu"
+ save_interval: 5
+ eval_during_train: True
+ eval_interval: 1
+ epochs: 30
+ print_batch_step: 20
+ use_visualdl: False
+ # used for static mode and model export
+ image_shape: [3, 192, 256]
+ save_inference_dir: "./inference"
+ use_multilabel: True
+
+# mixed precision training
+AMP:
+ scale_loss: 128.0
+ use_dynamic_loss_scaling: True
+ # O1: mixed fp16
+ level: O1
+
+# model architecture
+Arch:
+ name: "Res2Net200_vd_26w_4s"
+ pretrained: True
+ class_num: 19
+ infer_add_softmax: False
+
+# loss function config for traing/eval process
+Loss:
+ Train:
+ - MultiLabelLoss:
+ weight: 1.0
+ weight_ratio: True
+ size_sum: True
+ Eval:
+ - MultiLabelLoss:
+ weight: 1.0
+ weight_ratio: True
+ size_sum: True
+
+Optimizer:
+ name: Momentum
+ momentum: 0.9
+ lr:
+ name: Cosine
+ learning_rate: 0.01
+ warmup_epoch: 5
+ regularizer:
+ name: 'L2'
+ coeff: 0.0005
+
+# data loader for train and eval
+DataLoader:
+ Train:
+ dataset:
+ name: MultiLabelDataset
+ image_root: "dataset/VeRi/"
+ cls_label_path: "dataset/VeRi/train_list.txt"
+ label_ratio: True
+ transform_ops:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ size: [256, 192]
+ - Padv2:
+ size: [276, 212]
+ pad_mode: 1
+ fill_value: 0
+ - RandomCropImage:
+ size: [256, 192]
+ - RandFlipImage:
+ flip_code: 1
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ sampler:
+ name: DistributedBatchSampler
+ batch_size: 64
+ drop_last: True
+ shuffle: True
+ loader:
+ num_workers: 8
+ use_shared_memory: True
+ Eval:
+ dataset:
+ name: MultiLabelDataset
+ image_root: "dataset/VeRi/"
+ cls_label_path: "dataset/VeRi/test_list.txt"
+ label_ratio: True
+ transform_ops:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ size: [256, 192]
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ sampler:
+ name: DistributedBatchSampler
+ batch_size: 64
+ drop_last: False
+ shuffle: False
+ loader:
+ num_workers: 8
+ use_shared_memory: True
+
+
+Metric:
+ Eval:
+ - ATTRMetric:
+
+
diff --git a/ppcls/configs/PULC/vehicle_attr/ResNet50.yaml b/ppcls/configs/PULC/vehicle_attr/ResNet50.yaml
new file mode 100644
index 000000000..9218769c6
--- /dev/null
+++ b/ppcls/configs/PULC/vehicle_attr/ResNet50.yaml
@@ -0,0 +1,116 @@
+# global configs
+Global:
+ checkpoints: null
+ pretrained_model: null
+ output_dir: "./output/"
+ device: "gpu"
+ save_interval: 5
+ eval_during_train: True
+ eval_interval: 1
+ epochs: 30
+ print_batch_step: 20
+ use_visualdl: False
+ # used for static mode and model export
+ image_shape: [3, 192, 256]
+ save_inference_dir: "./inference"
+ use_multilabel: True
+
+# model architecture
+Arch:
+ name: "ResNet50"
+ pretrained: True
+ class_num: 19
+ infer_add_softmax: False
+
+# loss function config for traing/eval process
+Loss:
+ Train:
+ - MultiLabelLoss:
+ weight: 1.0
+ weight_ratio: True
+ size_sum: True
+ Eval:
+ - MultiLabelLoss:
+ weight: 1.0
+ weight_ratio: True
+ size_sum: True
+
+
+Optimizer:
+ name: Momentum
+ momentum: 0.9
+ lr:
+ name: Cosine
+ learning_rate: 0.01
+ warmup_epoch: 5
+ regularizer:
+ name: 'L2'
+ coeff: 0.0005
+
+# data loader for train and eval
+DataLoader:
+ Train:
+ dataset:
+ name: MultiLabelDataset
+ image_root: "dataset/VeRi/"
+ cls_label_path: "dataset/VeRi/train_list.txt"
+ label_ratio: True
+ transform_ops:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ size: [256, 192]
+ - Padv2:
+ size: [276, 212]
+ pad_mode: 1
+ fill_value: 0
+ - RandomCropImage:
+ size: [256, 192]
+ - RandFlipImage:
+ flip_code: 1
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ sampler:
+ name: DistributedBatchSampler
+ batch_size: 64
+ drop_last: True
+ shuffle: True
+ loader:
+ num_workers: 8
+ use_shared_memory: True
+ Eval:
+ dataset:
+ name: MultiLabelDataset
+ image_root: "dataset/VeRi/"
+ cls_label_path: "dataset/VeRi/test_list.txt"
+ label_ratio: True
+ transform_ops:
+ - DecodeImage:
+ to_rgb: True
+ channel_first: False
+ - ResizeImage:
+ size: [256, 192]
+ - NormalizeImage:
+ scale: 1.0/255.0
+ mean: [0.485, 0.456, 0.406]
+ std: [0.229, 0.224, 0.225]
+ order: ''
+ sampler:
+ name: DistributedBatchSampler
+ batch_size: 64
+ drop_last: False
+ shuffle: False
+ loader:
+ num_workers: 8
+ use_shared_memory: True
+
+
+Metric:
+ Eval:
+ - ATTRMetric:
+
+
diff --git a/ppcls/configs/PULC/vehicle_attr/search.yaml b/ppcls/configs/PULC/vehicle_attr/search.yaml
new file mode 100644
index 000000000..d5f41a3cd
--- /dev/null
+++ b/ppcls/configs/PULC/vehicle_attr/search.yaml
@@ -0,0 +1,34 @@
+base_config_file: ppcls/configs/PULC/vehicle_attr/PPLCNet_x1_0_search.yaml
+distill_config_file: ppcls/configs/PULC/vehicle_attr/PPLCNet_x1_0_distillation.yaml
+
+gpus: 0,1,2,3
+output_dir: output/search_vehicle_attr
+search_times: 1
+search_dict:
+ - search_key: lrs
+ replace_config:
+ - Optimizer.lr.learning_rate
+ search_values: [0.0075, 0.01, 0.0125]
+ - search_key: ra_probs
+ replace_config:
+ - DataLoader.Train.dataset.transform_ops.2.TimmAutoAugment.prob
+ search_values: [0.0, 0.1, 0.5]
+ - search_key: re_probs
+ replace_config:
+ - DataLoader.Train.dataset.transform_ops.7.RandomErasing.EPSILON
+ search_values: [0.0, 0.1, 0.5]
+ - search_key: lr_mult_list
+ replace_config:
+ - Arch.lr_mult_list
+ search_values:
+ - [0.0, 0.2, 0.4, 0.6, 0.8, 1.0]
+ - [0.0, 0.4, 0.4, 0.8, 0.8, 1.0]
+ - [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
+teacher:
+ rm_keys:
+ - Arch.lr_mult_list
+ search_values:
+ - ResNet101_vd
+ - ResNet50_vd
+final_replace:
+ Arch.lr_mult_list: Arch.models.1.Student.lr_mult_list
diff --git a/ppcls/data/postprocess/__init__.py b/ppcls/data/postprocess/__init__.py
index 54678dc44..eafcf3f00 100644
--- a/ppcls/data/postprocess/__init__.py
+++ b/ppcls/data/postprocess/__init__.py
@@ -18,6 +18,7 @@ from . import topk, threshoutput
from .topk import Topk, MultiLabelTopk
from .threshoutput import ThreshOutput
+from .attr_rec import VehicleAttribute
def build_postprocess(config):
diff --git a/ppcls/data/postprocess/attr_rec.py b/ppcls/data/postprocess/attr_rec.py
new file mode 100644
index 000000000..cf0f7a59d
--- /dev/null
+++ b/ppcls/data/postprocess/attr_rec.py
@@ -0,0 +1,71 @@
+# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
+#
+# Licensed under the Apache License, Version 2.0 (the "License");
+# you may not use this file except in compliance with the License.
+# You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing, software
+# distributed under the License is distributed on an "AS IS" BASIS,
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+# See the License for the specific language governing permissions and
+# limitations under the License.
+
+import os
+import numpy as np
+import paddle
+import paddle.nn.functional as F
+
+
+class VehicleAttribute(object):
+ def __init__(self, color_threshold=0.5, type_threshold=0.5):
+ self.color_threshold = color_threshold
+ self.type_threshold = type_threshold
+ self.color_list = [
+ "yellow", "orange", "green", "gray", "red", "blue", "white",
+ "golden", "brown", "black"
+ ]
+ self.type_list = [
+ "sedan", "suv", "van", "hatchback", "mpv", "pickup", "bus",
+ "truck", "estate"
+ ]
+
+ def __call__(self, x, file_names=None):
+ if isinstance(x, dict):
+ x = x['logits']
+ assert isinstance(x, paddle.Tensor)
+ if file_names is not None:
+ assert x.shape[0] == len(file_names)
+ x = F.sigmoid(x).numpy()
+
+ # postprocess output of predictor
+ batch_res = []
+ for idx, res in enumerate(x):
+ res = res.tolist()
+ label_res = []
+ color_idx = np.argmax(res[:10])
+ type_idx = np.argmax(res[10:])
+ print(color_idx, type_idx)
+ if res[color_idx] >= self.color_threshold:
+ color_info = f"Color: ({self.color_list[color_idx]}, prob: {res[color_idx]})"
+ else:
+ color_info = "Color unknown"
+
+ if res[type_idx + 10] >= self.type_threshold:
+ type_info = f"Type: ({self.type_list[type_idx]}, prob: {res[type_idx + 10]})"
+ else:
+ type_info = "Type unknown"
+
+ label_res = f"{color_info}, {type_info}"
+
+ threshold_list = [self.color_threshold
+ ] * 10 + [self.type_threshold] * 9
+ pred_res = (np.array(res) > np.array(threshold_list)
+ ).astype(np.int8).tolist()
+ batch_res.append({
+ "attr": label_res,
+ "pred": pred_res,
+ "file_name": file_names[idx]
+ })
+ return batch_res
diff --git a/ppcls/engine/engine.py b/ppcls/engine/engine.py
index 8a34c1bda..8e8a20c2a 100644
--- a/ppcls/engine/engine.py
+++ b/ppcls/engine/engine.py
@@ -460,7 +460,7 @@ class Engine(object):
assert self.mode == "export"
use_multilabel = self.config["Global"].get(
"use_multilabel",
- False) and not "ATTRMetric" in self.config["Metric"]["Eval"][0]
+ False) and "ATTRMetric" in self.config["Metric"]["Eval"][0]
model = ExportModel(self.config["Arch"], self.model, use_multilabel)
if self.config["Global"]["pretrained_model"] is not None:
load_dygraph_pretrain(model.base_model,
diff --git a/ppcls/loss/__init__.py b/ppcls/loss/__init__.py
index c1f2f95df..741eb3b61 100644
--- a/ppcls/loss/__init__.py
+++ b/ppcls/loss/__init__.py
@@ -24,6 +24,7 @@ from .distillationloss import DistillationDistanceLoss
from .distillationloss import DistillationRKDLoss
from .distillationloss import DistillationKLDivLoss
from .distillationloss import DistillationDKDLoss
+from .distillationloss import DistillationMultiLabelLoss
from .multilabelloss import MultiLabelLoss
from .afdloss import AFDLoss
diff --git a/ppcls/loss/distillationloss.py b/ppcls/loss/distillationloss.py
index c60a540db..4ca58d26d 100644
--- a/ppcls/loss/distillationloss.py
+++ b/ppcls/loss/distillationloss.py
@@ -22,6 +22,7 @@ from .distanceloss import DistanceLoss
from .rkdloss import RKdAngle, RkdDistance
from .kldivloss import KLDivLoss
from .dkdloss import DKDLoss
+from .multilabelloss import MultiLabelLoss
class DistillationCELoss(CELoss):
@@ -89,13 +90,16 @@ class DistillationDMLLoss(DMLLoss):
def __init__(self,
model_name_pairs=[],
act="softmax",
+ weight_ratio=False,
+ sum_across_class_dim=False,
key=None,
name="loss_dml"):
- super().__init__(act=act)
+ super().__init__(act=act, sum_across_class_dim=sum_across_class_dim)
assert isinstance(model_name_pairs, list)
self.key = key
self.model_name_pairs = model_name_pairs
self.name = name
+ self.weight_ratio = weight_ratio
def forward(self, predicts, batch):
loss_dict = dict()
@@ -105,7 +109,10 @@ class DistillationDMLLoss(DMLLoss):
if self.key is not None:
out1 = out1[self.key]
out2 = out2[self.key]
- loss = super().forward(out1, out2)
+ if self.weight_ratio is True:
+ loss = super().forward(out1, out2, batch)
+ else:
+ loss = super().forward(out1, out2)
if isinstance(loss, dict):
for key in loss:
loss_dict["{}_{}_{}_{}".format(key, pair[0], pair[1],
@@ -122,6 +129,7 @@ class DistillationDistanceLoss(DistanceLoss):
def __init__(self,
mode="l2",
model_name_pairs=[],
+ act=None,
key=None,
name="loss_",
**kargs):
@@ -130,6 +138,13 @@ class DistillationDistanceLoss(DistanceLoss):
self.key = key
self.model_name_pairs = model_name_pairs
self.name = name + mode
+ assert act in [None, "sigmoid", "softmax"]
+ if act == "sigmoid":
+ self.act = nn.Sigmoid()
+ elif act == "softmax":
+ self.act = nn.Softmax(axis=-1)
+ else:
+ self.act = None
def forward(self, predicts, batch):
loss_dict = dict()
@@ -139,6 +154,9 @@ class DistillationDistanceLoss(DistanceLoss):
if self.key is not None:
out1 = out1[self.key]
out2 = out2[self.key]
+ if self.act is not None:
+ out1 = self.act(out1)
+ out2 = self.act(out2)
loss = super().forward(out1, out2)
for key in loss:
loss_dict["{}_{}_{}".format(self.name, key, idx)] = loss[key]
@@ -235,3 +253,34 @@ class DistillationDKDLoss(DKDLoss):
loss = super().forward(out1, out2, batch)
loss_dict[f"{self.name}_{pair[0]}_{pair[1]}"] = loss
return loss_dict
+
+
+class DistillationMultiLabelLoss(MultiLabelLoss):
+ """
+ DistillationMultiLabelLoss
+ """
+
+ def __init__(self,
+ model_names=[],
+ epsilon=None,
+ size_sum=False,
+ weight_ratio=False,
+ key=None,
+ name="loss_mll"):
+ super().__init__(
+ epsilon=epsilon, size_sum=size_sum, weight_ratio=weight_ratio)
+ assert isinstance(model_names, list)
+ self.key = key
+ self.model_names = model_names
+ self.name = name
+
+ def forward(self, predicts, batch):
+ loss_dict = dict()
+ for name in self.model_names:
+ out = predicts[name]
+ if self.key is not None:
+ out = out[self.key]
+ loss = super().forward(out, batch)
+ for key in loss:
+ loss_dict["{}_{}".format(key, name)] = loss[key]
+ return loss_dict
diff --git a/ppcls/loss/dmlloss.py b/ppcls/loss/dmlloss.py
index 48bf6c024..e8983ed08 100644
--- a/ppcls/loss/dmlloss.py
+++ b/ppcls/loss/dmlloss.py
@@ -16,13 +16,15 @@ import paddle
import paddle.nn as nn
import paddle.nn.functional as F
+from ppcls.loss.multilabelloss import ratio2weight
+
class DMLLoss(nn.Layer):
"""
DMLLoss
"""
- def __init__(self, act="softmax", eps=1e-12):
+ def __init__(self, act="softmax", sum_across_class_dim=False, eps=1e-12):
super().__init__()
if act is not None:
assert act in ["softmax", "sigmoid"]
@@ -33,6 +35,7 @@ class DMLLoss(nn.Layer):
else:
self.act = None
self.eps = eps
+ self.sum_across_class_dim = sum_across_class_dim
def _kldiv(self, x, target):
class_num = x.shape[-1]
@@ -40,11 +43,20 @@ class DMLLoss(nn.Layer):
(target + self.eps) / (x + self.eps)) * class_num
return cost
- def forward(self, x, target):
+ def forward(self, x, target, gt_label=None):
if self.act is not None:
x = self.act(x)
target = self.act(target)
loss = self._kldiv(x, target) + self._kldiv(target, x)
loss = loss / 2
- loss = paddle.mean(loss)
+
+ # for multi-label dml loss
+ if gt_label is not None:
+ gt_label, label_ratio = gt_label[:, 0, :], gt_label[:, 1, :]
+ targets_mask = paddle.cast(gt_label > 0.5, 'float32')
+ weight = ratio2weight(targets_mask, paddle.to_tensor(label_ratio))
+ weight = weight * (gt_label > -1)
+ loss = loss * weight
+
+ loss = loss.sum(1).mean() if self.sum_across_class_dim else loss.mean()
return {"DMLLoss": loss}