feat: add the doc and demo about gallery2fc

add description doc and demo config
pull/1714/head
gaotingquan 2022-02-25 08:40:07 +00:00 committed by Tingquan Gao
parent 1020f41899
commit 4fc82eef5a
4 changed files with 124 additions and 6 deletions

View File

@ -2,7 +2,7 @@
本教程将介绍基于[Paddle Lite](https://github.com/PaddlePaddle/Paddle-Lite) 在移动端部署PaddleClas PP-ShiTu模型的详细步骤。
Paddle Lite是飞桨轻量化推理引擎为手机、IOT端提供高效推理能力并广泛整合跨平台硬件为端侧部署及应用落地问题提供轻量化的部署方案。
Paddle Lite是飞桨轻量化推理引擎为手机、IoT端提供高效推理能力并广泛整合跨平台硬件为端侧部署及应用落地问题提供轻量化的部署方案。
## 1. 准备环境
@ -216,3 +216,6 @@ A1如果已经走通了上述步骤更换模型只需要替换 `.nb` 模
Q2换一个图测试怎么做
A2替换 deploy 下的测试图像为你想要测试的图像并重新生成json配置文件或者直接修改图像路径使用 ADB 再次 push 到手机上即可。
Q3如果需要更换模型/预训练模型/底库数据集,需要怎么做:
A请参考文档 [基于分类方法的 PP-Shitu 移动端部署方案说明](./gallery2fc.md)。

View File

@ -0,0 +1,51 @@
# 识别模型转分类模型
PaddleClas 提供了 `gallery2fc.py` 工具,帮助大家将识别模型转为分类模型。
## 一、模型转换说明
### 1.1 准备底库数据、预训练模型
#### 1. 底库数据集
首先需要准备好底库数据,下面以 PaddleClas 提供饮料数据集drink_dataset_v1.0)为例进行说明,饮料数据集获取方法:
```shell
cd PaddleClas/
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/data/drink_dataset_v1.0.tar
tar -xf drink_dataset_v1.0.tar
```
饮料数据集的底库图片路径为 `drink_dataset_v1.0/gallery/`,底库图片列表可在 `drink_dataset_v1.0/gallery/drink_label.txt` 中查看,关于底库数据格式说明,请参考文档[数据集格式说明](../data_preparation/recognition_dataset.md#1-数据集格式说明)。
#### 2. 预训练模型
在开始转换模型前,需要准备好预训练模型,下面以量化后的 `general_PPLCNet_x2_5` 模型为例,下载预训练模型:
```shell
cd PaddleClas/pretrained/
wget https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/rec/models/pretrain/general_PPLCNet_x2_5_pretrained_v1.0_quant.pdparams
```
### 1.2 准备配置文件
在进行模型转换时,需要通过配置文件定义所需参数,本例中所用配置文件为 `ppcls/configs/GeneralRecognition/Gallery2FC_PPLCNet_x2_5.yaml`,对于配置文件字段的说明,如下所示:
* Global:
* pretrained_model: 预训练模型路径,无需包含 `.pdparams` 后缀名;
* image_shape: 模型输入数据尺寸,无需包含 batch size 维度;
* save_inference_dir: 转换后模型的保存路径;
* Arch: 模型结构相关定义,可参考 [配置说明](../models_training/config_description.md#3-%E8%AF%86%E5%88%AB%E6%A8%A1%E5%9E%8B)
* IndexProcess: 底库数据集相关定义
* image_root: 底库数据集路径;
* data_file: 底库数据集列表文件路径;
### 1.3 转换特征提取模型
在完成上述准备工作后,即可进行模型转换,命令如下所示:
```python
python ppcls/utils/gallery2fc.py -c ppcls/configs/GeneralRecognition/Gallery2FC_PPLCNet_x2_5.yaml
```
在上述命令执行完成后,转换并导出的模型保存在目录 `./inference/general_PPLCNet_x2_5_quant/` 下。在推理部署时,需要注意的是,模型的输出结果通常有多个,应选取分类结果作为模型输出,需要注意区分。

View File

@ -0,0 +1,51 @@
# global configs
Global:
pretrained_model: ./pretrained/general_PPLCNet_x2_5_pretrained_v1.0_quant
# used for static mode and model export
image_shape: [3, 224, 224]
save_inference_dir: ./inference/general_PPLCNet_x2_5_quant/inference
# for quantizaiton or prune model
Slim:
## for prune
quant:
name: pact
# model architecture
Arch:
name: RecModel
Backbone:
name: PPLCNet_x2_5
pretrained: False
use_ssld: True
BackboneStopLayer:
name: "flatten"
Neck:
name: FC
embedding_size: 1280
class_num: 512
Head:
name: ArcMargin
embedding_size: 512
class_num: 185341
margin: 0.2
scale: 30
# indexing engine config
IndexProcess:
image_root: "./drink_dataset_v1.0/gallery/"
data_file: "./drink_dataset_v1.0/gallery/drink_label.txt"
delimiter: "\t"
batch_size: 2
transform_ops:
- ResizeImage:
resize_short: 256
- CropImage:
size: 224
- NormalizeImage:
scale: 1.0/255.0
mean: [ 0.485, 0.456, 0.406 ]
std: [ 0.229, 0.224, 0.225 ]
order: ''
- ToCHWImage:

View File

@ -12,10 +12,14 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import paddle
import cv2
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.abspath(os.path.join(__dir__, '../../')))
from ppcls.arch import build_model
from ppcls.utils.config import parse_config, parse_args
from ppcls.utils.save_load import load_dygraph_pretrain
@ -51,12 +55,17 @@ class GalleryLayer(paddle.nn.Layer):
self.gallery_images.append(image_file)
gallery_docs.append(ori_line.strip())
gallery_labels.append(line[1].strip())
self.gallery_layer = paddle.nn.Linear(embedding_size, len(self.gallery_images), bias_attr=False)
self.gallery_layer = paddle.nn.Linear(
embedding_size, len(self.gallery_images), bias_attr=False)
self.gallery_layer.skip_quant = True
output_label_str = ""
for i, label_i in enumerate(gallery_labels):
output_label_str += "{} {}\n".format(i, label_i)
output_path = configs["Global"]["save_inference_dir"] + "_label.txt"
save_dir = os.path.dirname(configs["Global"]["save_inference_dir"])
if not os.path.exists(save_dir):
os.makedirs(save_dir)
with open(output_path, "w") as f:
f.write(output_label_str)
@ -71,19 +80,23 @@ class GalleryLayer(paddle.nn.Layer):
embedding_size = self.configs["Arch"]["Head"]["embedding_size"]
batch_index = 0
input_tensor = paddle.zeros(self.image_shape)
gallery_feature = paddle.zeros((len(self.gallery_images), embedding_size))
gallery_feature = paddle.zeros(
(len(self.gallery_images), embedding_size))
for i, image_path in enumerate(self.gallery_images):
image = cv2.imread(image_path)[:, :, ::-1]
for op in preprocess_ops:
image = op(image)
input_tensor[batch_index] = image
batch_index += 1
if batch_index == self.batch_size or i == len(self.gallery_images) - 1:
if batch_index == self.batch_size or i == len(
self.gallery_images) - 1:
batch_feature = feature_extractor(input_tensor)["features"]
for j in range(batch_index):
feature = batch_feature[j]
norm_feature = paddle.nn.functional.normalize(feature, axis=0)
norm_feature = paddle.nn.functional.normalize(
feature, axis=0)
gallery_feature[i - batch_index + j + 1] = norm_feature
batch_index = 0
self.gallery_layer.set_state_dict({"_layer.weight": gallery_feature.T})