dbg theseus
parent
ce39aea97f
commit
5131956d15
|
@ -38,20 +38,21 @@ class TheseusLayer(nn.Layer):
|
|||
for layer_i in self._sub_layers:
|
||||
layer_name = self._sub_layers[layer_i].full_name()
|
||||
if isinstance(self._sub_layers[layer_i], (nn.Sequential, nn.LayerList)):
|
||||
self._sub_layers[layer_i] = wrap_theseus(self._sub_layers[layer_i])
|
||||
self._sub_layers[layer_i].res_dict = self.res_dict
|
||||
self._sub_layers[layer_i] = wrap_theseus(self._sub_layers[layer_i], self.res_dict)
|
||||
self._sub_layers[layer_i].update_res(return_patterns)
|
||||
else:
|
||||
for return_pattern in return_patterns:
|
||||
if re.match(return_pattern, layer_name):
|
||||
if not isinstance(self._sub_layers[layer_i], TheseusLayer):
|
||||
self._sub_layers[layer_i] = wrap_theseus(self._sub_layers[layer_i])
|
||||
self._sub_layers[layer_i] = wrap_theseus(self._sub_layers[layer_i], self.res_dict)
|
||||
else:
|
||||
self._sub_layers[layer_i].res_dict = self.res_dict
|
||||
|
||||
self._sub_layers[layer_i].register_forward_post_hook(
|
||||
self._sub_layers[layer_i]._save_sub_res_hook)
|
||||
self._sub_layers[layer_i].res_dict = self.res_dict
|
||||
if isinstance(self._sub_layers[layer_i], TheseusLayer):
|
||||
self._sub_layers[layer_i].res_dict = self.res_dict
|
||||
self._sub_layers[layer_i].update_res(return_patterns)
|
||||
if isinstance(self._sub_layers[layer_i], TheseusLayer):
|
||||
self._sub_layers[layer_i].res_dict = self.res_dict
|
||||
self._sub_layers[layer_i].update_res(return_patterns)
|
||||
|
||||
def _save_sub_res_hook(self, layer, input, output):
|
||||
self.res_dict[layer.full_name()] = output
|
||||
|
@ -85,10 +86,12 @@ class TheseusLayer(nn.Layer):
|
|||
|
||||
|
||||
class WrapLayer(TheseusLayer):
|
||||
def __init__(self, sub_layer):
|
||||
def __init__(self, sub_layer, res_dict=None):
|
||||
super(WrapLayer, self).__init__()
|
||||
self.sub_layer = sub_layer
|
||||
self.name = sub_layer.full_name()
|
||||
if res_dict is not None:
|
||||
self.res_dict = res_dict
|
||||
|
||||
def full_name(self):
|
||||
return self.name
|
||||
|
@ -101,14 +104,14 @@ class WrapLayer(TheseusLayer):
|
|||
return
|
||||
for layer_i in self.sub_layer._sub_layers:
|
||||
if isinstance(self.sub_layer._sub_layers[layer_i], (nn.Sequential, nn.LayerList)):
|
||||
self.sub_layer._sub_layers[layer_i] = wrap_theseus(self.sub_layer._sub_layers[layer_i])
|
||||
self.sub_layer._sub_layers[layer_i].res_dict = self.res_dict
|
||||
self.sub_layer._sub_layers[layer_i] = wrap_theseus(self.sub_layer._sub_layers[layer_i], self.res_dict)
|
||||
self.sub_layer._sub_layers[layer_i].update_res(return_patterns)
|
||||
elif isinstance(self.sub_layer._sub_layers[layer_i], TheseusLayer):
|
||||
self.sub_layer._sub_layers[layer_i].res_dict = self.res_dict
|
||||
|
||||
layer_name = self.sub_layer._sub_layers[layer_i].full_name()
|
||||
for return_pattern in return_patterns:
|
||||
if re.match(return_pattern, layer_name):
|
||||
self.sub_layer._sub_layers[layer_i].res_dict = self.res_dict
|
||||
self.sub_layer._sub_layers[layer_i].register_forward_post_hook(
|
||||
self._sub_layers[layer_i]._save_sub_res_hook)
|
||||
|
||||
|
@ -116,6 +119,6 @@ class WrapLayer(TheseusLayer):
|
|||
self.sub_layer._sub_layers[layer_i].update_res(return_patterns)
|
||||
|
||||
|
||||
def wrap_theseus(sub_layer):
|
||||
wrapped_layer = WrapLayer(sub_layer)
|
||||
def wrap_theseus(sub_layer, res_dict=None):
|
||||
wrapped_layer = WrapLayer(sub_layer, res_dict)
|
||||
return wrapped_layer
|
||||
|
|
|
@ -146,12 +146,15 @@ class MobileNet(TheseusLayer):
|
|||
class_num,
|
||||
weight_attr=ParamAttr(initializer=KaimingNormal()))
|
||||
|
||||
def forward(self, x):
|
||||
def forward(self, x, res_dict=None):
|
||||
x = self.conv(x)
|
||||
x = self.blocks(x)
|
||||
x = self.avg_pool(x)
|
||||
x = self.flatten(x)
|
||||
x = self.fc(x)
|
||||
if self.res_dict and res_dict is not None:
|
||||
for res_key in list(self.res_dict):
|
||||
res_dict[res_key] = self.res_dict.pop(res_key)
|
||||
return x
|
||||
|
||||
|
||||
|
|
|
@ -111,7 +111,7 @@ class VGGNet(TheseusLayer):
|
|||
model: nn.Layer. Specific VGG model depends on args.
|
||||
"""
|
||||
|
||||
def __init__(self, config, stop_grad_layers=0, class_num=1000, return_patterns=None):
|
||||
def __init__(self, config, stop_grad_layers=0, class_num=1000):
|
||||
super().__init__()
|
||||
|
||||
self.stop_grad_layers = stop_grad_layers
|
||||
|
|
Loading…
Reference in New Issue