docs: update benchmark curve
parent
74a05abc50
commit
53ec5f8e18
|
@ -8,14 +8,17 @@ Based on the ImageNet-1k classification dataset, the 35 classification network s
|
|||
|
||||
Curves of accuracy to the inference time of common server-side models are shown as follows.
|
||||
|
||||

|
||||
|
||||

|
||||
|
||||
Curves of accuracy to the inference time and storage size of common mobile-side models are shown as follows.
|
||||
|
||||

|
||||

|
||||
|
||||

|
||||

|
||||
|
||||
Curves of accuracy to the inference time of some VisionTransformer models are shown as follows.
|
||||
|
||||

|
||||
|
||||
<a name="SSLD_pretrained_series"></a>
|
||||
### SSLD pretrained models
|
||||
|
|
|
@ -5,7 +5,7 @@
|
|||
Based on the ImageNet1k classification dataset, the 29 classification network structures supported by PaddleClas and the corresponding 134 image classification pretrained models are shown below. Training trick, a brief introduction to each series of network structures, and performance evaluation will be shown in the corresponding chapters.
|
||||
|
||||
## Evaluation environment
|
||||
* CPU evaluation environment is based on Snapdragon 855 (SD855).
|
||||
* Arm evaluation environment is based on Snapdragon 855 (SD855).
|
||||
* The GPU evaluation environment is based on V100 and TensorRT, and the evaluation script is as follows.
|
||||
|
||||
```shell
|
||||
|
@ -23,12 +23,11 @@ python tools/infer/predict.py \
|
|||
--batch_size=1
|
||||
```
|
||||
|
||||

|
||||
|
||||

|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||
> If you think this document is helpful to you, welcome to give a star to our project:[https://github.com/PaddlePaddle/PaddleClas](https://github.com/PaddlePaddle/PaddleClas)
|
||||
|
||||
|
|
Binary file not shown.
Before Width: | Height: | Size: 162 KiB |
Binary file not shown.
After Width: | Height: | Size: 367 KiB |
Binary file not shown.
After Width: | Height: | Size: 254 KiB |
Binary file not shown.
Before Width: | Height: | Size: 141 KiB After Width: | Height: | Size: 357 KiB |
|
@ -44,8 +44,7 @@
|
|||
|
||||
常见服务器端模型的精度指标与其预测耗时的变化曲线如下图所示。
|
||||
|
||||

|
||||
|
||||

|
||||
|
||||
常见移动端模型的精度指标与其预测耗时、模型存储大小的变化曲线如下图所示。
|
||||
|
||||
|
@ -53,6 +52,10 @@
|
|||
|
||||

|
||||
|
||||
部分VisionTransformer模型的精度指标与其预测耗时的变化曲线如下图所示。
|
||||
|
||||

|
||||
|
||||
<a name="2"></a>
|
||||
|
||||
## 2. SSLD 知识蒸馏预训练模型
|
||||
|
|
|
@ -16,17 +16,16 @@
|
|||
<a name='2'></a>
|
||||
|
||||
## 2. 评估环境
|
||||
* CPU 的评估环境基于骁龙 855(SD855)。
|
||||
* Arm 的评估环境基于骁龙 855(SD855)。
|
||||
* Intel CPU 的评估环境基于 Intel(R) Xeon(R) Gold 6148。
|
||||
* GPU 评估环境基于 V100 和 TensorRT。
|
||||
|
||||
|
||||

|
||||
|
||||

|
||||

|
||||
|
||||

|
||||
|
||||

|
||||
|
||||
> 如果您觉得此文档对您有帮助,欢迎 star 我们的项目:[https://github.com/PaddlePaddle/PaddleClas](https://github.com/PaddlePaddle/PaddleClas)
|
||||
|
||||
|
|
Loading…
Reference in New Issue