diff --git a/docs/en/algorithm_introduction/ImageNet_models_en.md b/docs/en/algorithm_introduction/ImageNet_models_en.md
index 9a2f0b955..a3471c5f3 100644
--- a/docs/en/algorithm_introduction/ImageNet_models_en.md
+++ b/docs/en/algorithm_introduction/ImageNet_models_en.md
@@ -8,14 +8,17 @@ Based on the ImageNet-1k classification dataset, the 35 classification network s
Curves of accuracy to the inference time of common server-side models are shown as follows.
-
-
+
Curves of accuracy to the inference time and storage size of common mobile-side models are shown as follows.
-
+
-
+
+
+Curves of accuracy to the inference time of some VisionTransformer models are shown as follows.
+
+
### SSLD pretrained models
diff --git a/docs/en/models/models_intro_en.md b/docs/en/models/models_intro_en.md
index 677d742d6..f932adaee 100644
--- a/docs/en/models/models_intro_en.md
+++ b/docs/en/models/models_intro_en.md
@@ -5,7 +5,7 @@
Based on the ImageNet1k classification dataset, the 29 classification network structures supported by PaddleClas and the corresponding 134 image classification pretrained models are shown below. Training trick, a brief introduction to each series of network structures, and performance evaluation will be shown in the corresponding chapters.
## Evaluation environment
-* CPU evaluation environment is based on Snapdragon 855 (SD855).
+* Arm evaluation environment is based on Snapdragon 855 (SD855).
* The GPU evaluation environment is based on V100 and TensorRT, and the evaluation script is as follows.
```shell
@@ -23,12 +23,11 @@ python tools/infer/predict.py \
--batch_size=1
```
-
-
-
+

+
> If you think this document is helpful to you, welcome to give a star to our project:[https://github.com/PaddlePaddle/PaddleClas](https://github.com/PaddlePaddle/PaddleClas)
diff --git a/docs/images/models/V100_benchmark/v100.fp32.bs1.main_fps_top1_s.jpg b/docs/images/models/V100_benchmark/v100.fp32.bs1.main_fps_top1_s.jpg
deleted file mode 100644
index 44a101c67..000000000
Binary files a/docs/images/models/V100_benchmark/v100.fp32.bs1.main_fps_top1_s.jpg and /dev/null differ
diff --git a/docs/images/models/V100_benchmark/v100.fp32.bs1.main_fps_top1_s.png b/docs/images/models/V100_benchmark/v100.fp32.bs1.main_fps_top1_s.png
new file mode 100644
index 000000000..ab7f3eb37
Binary files /dev/null and b/docs/images/models/V100_benchmark/v100.fp32.bs1.main_fps_top1_s.png differ
diff --git a/docs/images/models/V100_benchmark/v100.fp32.bs1.visiontransformer.png b/docs/images/models/V100_benchmark/v100.fp32.bs1.visiontransformer.png
new file mode 100644
index 000000000..500961912
Binary files /dev/null and b/docs/images/models/V100_benchmark/v100.fp32.bs1.visiontransformer.png differ
diff --git a/docs/images/models/mobile_arm_top1.png b/docs/images/models/mobile_arm_top1.png
index 87afa98ef..9156764dc 100644
Binary files a/docs/images/models/mobile_arm_top1.png and b/docs/images/models/mobile_arm_top1.png differ
diff --git a/docs/zh_CN/algorithm_introduction/ImageNet_models.md b/docs/zh_CN/algorithm_introduction/ImageNet_models.md
index 6d05078c9..3b6d7b4ba 100644
--- a/docs/zh_CN/algorithm_introduction/ImageNet_models.md
+++ b/docs/zh_CN/algorithm_introduction/ImageNet_models.md
@@ -44,8 +44,7 @@
常见服务器端模型的精度指标与其预测耗时的变化曲线如下图所示。
-
-
+
常见移动端模型的精度指标与其预测耗时、模型存储大小的变化曲线如下图所示。
@@ -53,6 +52,10 @@

+部分VisionTransformer模型的精度指标与其预测耗时的变化曲线如下图所示。
+
+
+
## 2. SSLD 知识蒸馏预训练模型
diff --git a/docs/zh_CN/models/models_intro.md b/docs/zh_CN/models/models_intro.md
index 0c30be7e4..b141a8af4 100644
--- a/docs/zh_CN/models/models_intro.md
+++ b/docs/zh_CN/models/models_intro.md
@@ -16,17 +16,16 @@
## 2. 评估环境
-* CPU 的评估环境基于骁龙 855(SD855)。
+* Arm 的评估环境基于骁龙 855(SD855)。
* Intel CPU 的评估环境基于 Intel(R) Xeon(R) Gold 6148。
* GPU 评估环境基于 V100 和 TensorRT。
-
-
-
+

+
> 如果您觉得此文档对您有帮助,欢迎 star 我们的项目:[https://github.com/PaddlePaddle/PaddleClas](https://github.com/PaddlePaddle/PaddleClas)