update_scripts_benchmark
parent
5fb8f0d308
commit
55489f7179
|
@ -6,7 +6,8 @@
|
||||||
# 2 拷贝该模型需要数据、预训练模型
|
# 2 拷贝该模型需要数据、预训练模型
|
||||||
# 3 批量运行(如不方便批量,1,2需放到单个模型中)
|
# 3 批量运行(如不方便批量,1,2需放到单个模型中)
|
||||||
|
|
||||||
model_mode_list=(MobileNetV1 MobileNetV2 MobileNetV3_large_x1_0 EfficientNetB0 ShuffleNetV2_x1_0 DenseNet121 HRNet_W48_C SwinTransformer_tiny_patch4_window7_224 alt_gvt_base)
|
model_mode_list=(MobileNetV1 MobileNetV2 MobileNetV3_large_x1_0 ShuffleNetV2_x1_0 HRNet_W48_C SwinTransformer_tiny_patch4_window7_224 alt_gvt_base) # benchmark 监控模型列表
|
||||||
|
#model_mode_list=(MobileNetV1 MobileNetV2 MobileNetV3_large_x1_0 EfficientNetB0 ShuffleNetV2_x1_0 DenseNet121 HRNet_W48_C SwinTransformer_tiny_patch4_window7_224 alt_gvt_base) # 该脚本支持列表
|
||||||
fp_item_list=(fp32)
|
fp_item_list=(fp32)
|
||||||
bs_list=(32 64 96 128)
|
bs_list=(32 64 96 128)
|
||||||
for model_mode in ${model_mode_list[@]}; do
|
for model_mode in ${model_mode_list[@]}; do
|
||||||
|
@ -14,11 +15,11 @@ for model_mode in ${model_mode_list[@]}; do
|
||||||
for bs_item in ${bs_list[@]};do
|
for bs_item in ${bs_list[@]};do
|
||||||
echo "index is speed, 1gpus, begin, ${model_name}"
|
echo "index is speed, 1gpus, begin, ${model_name}"
|
||||||
run_mode=sp
|
run_mode=sp
|
||||||
CUDA_VISIBLE_DEVICES=0 bash benchmark/run_benchmark.sh ${run_mode} ${bs_item} ${fp_item} 10 ${model_mode} # (5min)
|
CUDA_VISIBLE_DEVICES=0 bash benchmark/run_benchmark.sh ${run_mode} ${bs_item} ${fp_item} 1 ${model_mode} | tee ${log_path}/clas_${model_mode}_${run_mode}_bs${bs_item}_${fp_item}_1gpus 2>&1 # (5min)
|
||||||
sleep 10
|
sleep 10
|
||||||
echo "index is speed, 8gpus, run_mode is multi_process, begin, ${model_name}"
|
echo "index is speed, 8gpus, run_mode is multi_process, begin, ${model_name}"
|
||||||
run_mode=mp
|
run_mode=mp
|
||||||
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 bash benchmark/run_benchmark.sh ${run_mode} ${bs_item} ${fp_item} 10 ${model_mode}
|
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 bash benchmark/run_benchmark.sh ${run_mode} ${bs_item} ${fp_item} 1 ${model_mode}| tee ${log_path}/clas_${model_mode}_${run_mode}_bs${bs_item}_${fp_item}_8gpus8p 2>&1
|
||||||
sleep 10
|
sleep 10
|
||||||
done
|
done
|
||||||
done
|
done
|
||||||
|
|
|
@ -6,10 +6,19 @@ function _set_params(){
|
||||||
run_mode=${1:-"sp"} # 单卡sp|多卡mp
|
run_mode=${1:-"sp"} # 单卡sp|多卡mp
|
||||||
batch_size=${2:-"64"}
|
batch_size=${2:-"64"}
|
||||||
fp_item=${3:-"fp32"} # fp32|fp16
|
fp_item=${3:-"fp32"} # fp32|fp16
|
||||||
epochs=${4:-"10"} # 可选,如果需要修改代码提前中断
|
epochs=${4:-"2"} # 可选,如果需要修改代码提前中断
|
||||||
model_name=${5:-"model_name"}
|
model_name=${5:-"model_name"}
|
||||||
run_log_path="${TRAIN_LOG_DIR:-$(pwd)}/benchmark" # TRAIN_LOG_DIR 后续QA设置该参数
|
run_log_path="${TRAIN_LOG_DIR:-$(pwd)}/benchmark" # TRAIN_LOG_DIR 后续QA设置该参数
|
||||||
|
|
||||||
|
index=1
|
||||||
|
mission_name="图像分类" # 模型所属任务名称,具体可参考scripts/config.ini (必填)
|
||||||
|
direction_id=0 # 任务所属方向,0:CV,1:NLP,2:Rec。 (必填)
|
||||||
|
skip_steps=8 # 解析日志,有些模型前几个step耗时长,需要跳过 (必填)
|
||||||
|
keyword="ips:" # 解析日志,筛选出数据所在行的关键字 (必填)
|
||||||
|
keyword_loss="loss:" #选填
|
||||||
|
model_mode=-1 # 解析日志,具体参考scripts/analysis.py. (必填)
|
||||||
|
ips_unit="images/s"
|
||||||
|
base_batch_size=$batch_size
|
||||||
# 以下不用修改
|
# 以下不用修改
|
||||||
device=${CUDA_VISIBLE_DEVICES//,/ }
|
device=${CUDA_VISIBLE_DEVICES//,/ }
|
||||||
arr=(${device})
|
arr=(${device})
|
||||||
|
@ -51,6 +60,8 @@ function _train(){
|
||||||
cp mylog/workerlog.0 ${log_file}
|
cp mylog/workerlog.0 ${log_file}
|
||||||
fi
|
fi
|
||||||
}
|
}
|
||||||
|
|
||||||
|
source ${BENCHMARK_ROOT}/scripts/run_model.sh # 在该脚本中会对符合benchmark规范的log使用analysis.py 脚本进行性能数据解析;该脚本在连调时可从benchmark repo中下载https://github.com/PaddlePaddle/benchmark/blob/master/scripts/run_model.sh;如果不联调只想要产出训练log可以注掉本行,提交时需打开
|
||||||
_set_params $@
|
_set_params $@
|
||||||
_train
|
_run
|
||||||
|
#_train
|
||||||
|
|
Loading…
Reference in New Issue