Update metrics.py
parent
3a2f97a911
commit
65780c29df
|
@ -15,8 +15,6 @@
|
|||
import numpy as np
|
||||
import paddle
|
||||
import paddle.nn as nn
|
||||
from functools import lru_cache
|
||||
|
||||
|
||||
class TopkAcc(nn.Layer):
|
||||
def __init__(self, topk=(1, 5)):
|
||||
|
@ -36,35 +34,54 @@ class TopkAcc(nn.Layer):
|
|||
x, label, k=k)
|
||||
return metric_dict
|
||||
|
||||
|
||||
class mAP(nn.Layer):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def forward(self, similarities_matrix, query_img_id, gallery_img_id):
|
||||
def forward(self, similarities_matrix, query_labels, gallery_labels):
|
||||
metric_dict = dict()
|
||||
_, all_AP, _ = get_metrics(similarities_matrix, query_img_id,
|
||||
gallery_img_id)
|
||||
|
||||
choosen_indices = paddle.argsort(similarities_matrix, axis=1, descending=True)
|
||||
gallery_labels_transpose = paddle.transpose(gallery_labels, [1,0])
|
||||
gallery_labels_transpose = paddle.broadcast_to(gallery_labels_transpose, shape=[choosen_indices.shape[0], gallery_labels_transpose.shape[1]])
|
||||
choosen_label = paddle.index_sample(gallery_labels_transpose, choosen_indices)
|
||||
equal_flag = paddle.equal(choosen_label, query_labels)
|
||||
equal_flag = paddle.cast(equal_flag, 'float32')
|
||||
|
||||
mAP = np.mean(all_AP)
|
||||
metric_dict["mAP"] = mAP
|
||||
acc_sum = paddle.cumsum(equal_flag, axis=1)
|
||||
div = paddle.arange(acc_sum.shape[1]).astype("float32") + 1
|
||||
precision = paddle.divide(acc_sum, div)
|
||||
|
||||
#calc map
|
||||
precision_mask = paddle.multiply(equal_flag, precision)
|
||||
ap = paddle.sum(precision_mask, axis=1) / paddle.sum(equal_flag, axis=1)
|
||||
metric_dict["mAP"] = paddle.mean(ap).numpy()[0]
|
||||
return metric_dict
|
||||
|
||||
|
||||
class mINP(nn.Layer):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def forward(self, similarities_matrix, query_img_id, gallery_img_id):
|
||||
def forward(self, similarities_matrix, query_labels, gallery_labels):
|
||||
metric_dict = dict()
|
||||
_, _, all_INP = get_metrics(similarities_matrix, query_img_id,
|
||||
gallery_img_id)
|
||||
|
||||
choosen_indices = paddle.argsort(similarities_matrix, axis=1, descending=True)
|
||||
gallery_labels_transpose = paddle.transpose(gallery_labels, [1,0])
|
||||
gallery_labels_transpose = paddle.broadcast_to(gallery_labels_transpose, shape=[choosen_indices.shape[0], gallery_labels_transpose.shape[1]])
|
||||
choosen_label = paddle.index_sample(gallery_labels_transpose, choosen_indices)
|
||||
tmp = paddle.equal(choosen_label, query_labels)
|
||||
tmp = paddle.cast(tmp, 'float64')
|
||||
|
||||
mINP = np.mean(all_INP)
|
||||
metric_dict["mINP"] = mINP
|
||||
#do accumulative sum
|
||||
div = paddle.arange(tmp.shape[1]).astype("float64") + 2
|
||||
minus = paddle.divide(tmp, div)
|
||||
auxilary = paddle.subtract(tmp, minus)
|
||||
hard_index = paddle.argmax(auxilary, axis=1).astype("float64")
|
||||
all_INP = paddle.divide(paddle.sum(tmp, axis=1), hard_index)
|
||||
mINP = paddle.mean(all_INP)
|
||||
metric_dict["mINP"] = mINP.numpy()[0]
|
||||
return metric_dict
|
||||
|
||||
|
||||
class Recallk(nn.Layer):
|
||||
def __init__(self, topk=(1, 5)):
|
||||
super().__init__()
|
||||
|
@ -72,91 +89,26 @@ class Recallk(nn.Layer):
|
|||
if isinstance(topk, int):
|
||||
topk = [topk]
|
||||
self.topk = topk
|
||||
self.max_rank = max(self.topk) if max(self.topk) > 50 else 50
|
||||
|
||||
def forward(self, similarities_matrix, query_img_id, gallery_img_id):
|
||||
def forward(self, similarities_matrix, query_labels, gallery_labels):
|
||||
metric_dict = dict()
|
||||
all_cmc, _, _ = get_metrics(similarities_matrix, query_img_id,
|
||||
gallery_img_id, self.max_rank)
|
||||
|
||||
#get cmc
|
||||
choosen_indices = paddle.argsort(similarities_matrix, axis=1, descending=True)
|
||||
gallery_labels_transpose = paddle.transpose(gallery_labels, [1,0])
|
||||
gallery_labels_transpose = paddle.broadcast_to(gallery_labels_transpose, shape=[choosen_indices.shape[0], gallery_labels_transpose.shape[1]])
|
||||
choosen_label = paddle.index_sample(gallery_labels_transpose, choosen_indices)
|
||||
equal_flag = paddle.equal(choosen_label, query_labels)
|
||||
equal_flag = paddle.cast(equal_flag, 'float32')
|
||||
|
||||
acc_sum = paddle.cumsum(equal_flag, axis=1)
|
||||
mask = paddle.greater_than(acc_sum, paddle.to_tensor(0.)).astype("float32")
|
||||
all_cmc = paddle.mean(mask, axis=0).numpy()
|
||||
|
||||
for k in self.topk:
|
||||
metric_dict["recall{}".format(k)] = all_cmc[k - 1]
|
||||
return metric_dict
|
||||
|
||||
|
||||
# retrieval metrics
|
||||
class RetriMetric(nn.Layer):
|
||||
def __init__(self, config):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.max_rank = 50 #max(self.topk) if max(self.topk) > 50 else 50
|
||||
|
||||
def forward(self, similarities_matrix, query_img_id, gallery_img_id):
|
||||
metric_dict = dict()
|
||||
all_cmc, all_AP, all_INP = get_metrics(
|
||||
similarities_matrix, query_img_id, gallery_img_id, self.max_rank)
|
||||
if "Recallk" in self.config.keys():
|
||||
topk = self.config['Recallk']['topk']
|
||||
assert isinstance(topk, (int, list, tuple))
|
||||
if isinstance(topk, int):
|
||||
topk = [topk]
|
||||
for k in topk:
|
||||
metric_dict["recall{}".format(k)] = all_cmc[k - 1]
|
||||
if "mAP" in self.config.keys():
|
||||
mAP = np.mean(all_AP)
|
||||
metric_dict["mAP"] = mAP
|
||||
if "mINP" in self.config.keys():
|
||||
mINP = np.mean(all_INP)
|
||||
metric_dict["mINP"] = mINP
|
||||
return metric_dict
|
||||
|
||||
|
||||
@lru_cache()
|
||||
def get_metrics(similarities_matrix, query_img_id, gallery_img_id,
|
||||
max_rank=50):
|
||||
num_q, num_g = similarities_matrix.shape
|
||||
q_pids = query_img_id.numpy().reshape((query_img_id.shape[0]))
|
||||
g_pids = gallery_img_id.numpy().reshape((gallery_img_id.shape[0]))
|
||||
if num_g < max_rank:
|
||||
max_rank = num_g
|
||||
print('Note: number of gallery samples is quite small, got {}'.format(
|
||||
num_g))
|
||||
indices = paddle.argsort(
|
||||
similarities_matrix, axis=1, descending=True).numpy()
|
||||
|
||||
all_cmc = []
|
||||
all_AP = []
|
||||
all_INP = []
|
||||
num_valid_q = 0
|
||||
matches = (g_pids[indices] == q_pids[:, np.newaxis]).astype(np.int32)
|
||||
for q_idx in range(num_q):
|
||||
raw_cmc = matches[q_idx]
|
||||
if not np.any(raw_cmc):
|
||||
continue
|
||||
cmc = raw_cmc.cumsum()
|
||||
pos_idx = np.where(raw_cmc == 1)
|
||||
max_pos_idx = np.max(pos_idx)
|
||||
inp = cmc[max_pos_idx] / (max_pos_idx + 1.0)
|
||||
all_INP.append(inp)
|
||||
cmc[cmc > 1] = 1
|
||||
|
||||
all_cmc.append(cmc[:max_rank])
|
||||
num_valid_q += 1.
|
||||
|
||||
num_rel = raw_cmc.sum()
|
||||
tmp_cmc = raw_cmc.cumsum()
|
||||
tmp_cmc = [x / (i + 1.) for i, x in enumerate(tmp_cmc)]
|
||||
tmp_cmc = np.asarray(tmp_cmc) * raw_cmc
|
||||
AP = tmp_cmc.sum() / num_rel
|
||||
all_AP.append(AP)
|
||||
assert num_valid_q > 0, 'Error: all query identities do not appear in gallery'
|
||||
|
||||
all_cmc = np.asarray(all_cmc).astype(np.float32)
|
||||
all_cmc = all_cmc.sum(0) / num_valid_q
|
||||
|
||||
return all_cmc, all_AP, all_INP
|
||||
|
||||
|
||||
class DistillationTopkAcc(TopkAcc):
|
||||
def __init__(self, model_key, feature_key=None, topk=(1, 5)):
|
||||
super().__init__(topk=topk)
|
||||
|
|
Loading…
Reference in New Issue