fix: change to relative import
parent
d82e27fd17
commit
6cb17cfe44
|
@ -14,4 +14,4 @@
|
|||
|
||||
__all__ = ['PaddleClas']
|
||||
from .paddleclas import PaddleClas
|
||||
from ppcls.arch.backbone import *
|
||||
from .ppcls.arch.backbone import *
|
||||
|
|
|
@ -23,11 +23,11 @@ from . import backbone, gears
|
|||
from .backbone import *
|
||||
from .gears import build_gear
|
||||
from .utils import *
|
||||
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
|
||||
from ppcls.utils import logger
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain
|
||||
from ppcls.arch.slim import prune_model, quantize_model
|
||||
from ppcls.arch.distill.afd_attention import LinearTransformStudent, LinearTransformTeacher
|
||||
from .backbone.base.theseus_layer import TheseusLayer
|
||||
from ..utils import logger
|
||||
from ..utils.save_load import load_dygraph_pretrain
|
||||
from .slim import prune_model, quantize_model
|
||||
from .distill.afd_attention import LinearTransformStudent, LinearTransformTeacher
|
||||
|
||||
__all__ = ["build_model", "RecModel", "DistillationModel", "AttentionModel"]
|
||||
|
||||
|
|
|
@ -15,62 +15,62 @@
|
|||
import sys
|
||||
import inspect
|
||||
|
||||
from ppcls.arch.backbone.legendary_models.mobilenet_v1 import MobileNetV1_x0_25, MobileNetV1_x0_5, MobileNetV1_x0_75, MobileNetV1
|
||||
from ppcls.arch.backbone.legendary_models.mobilenet_v3 import MobileNetV3_small_x0_35, MobileNetV3_small_x0_5, MobileNetV3_small_x0_75, MobileNetV3_small_x1_0, MobileNetV3_small_x1_25, MobileNetV3_large_x0_35, MobileNetV3_large_x0_5, MobileNetV3_large_x0_75, MobileNetV3_large_x1_0, MobileNetV3_large_x1_25
|
||||
from ppcls.arch.backbone.legendary_models.resnet import ResNet18, ResNet18_vd, ResNet34, ResNet34_vd, ResNet50, ResNet50_vd, ResNet101, ResNet101_vd, ResNet152, ResNet152_vd, ResNet200_vd
|
||||
from ppcls.arch.backbone.legendary_models.vgg import VGG11, VGG13, VGG16, VGG19
|
||||
from ppcls.arch.backbone.legendary_models.inception_v3 import InceptionV3
|
||||
from ppcls.arch.backbone.legendary_models.hrnet import HRNet_W18_C, HRNet_W30_C, HRNet_W32_C, HRNet_W40_C, HRNet_W44_C, HRNet_W48_C, HRNet_W60_C, HRNet_W64_C, SE_HRNet_W64_C
|
||||
from ppcls.arch.backbone.legendary_models.pp_lcnet import PPLCNet_x0_25, PPLCNet_x0_35, PPLCNet_x0_5, PPLCNet_x0_75, PPLCNet_x1_0, PPLCNet_x1_5, PPLCNet_x2_0, PPLCNet_x2_5
|
||||
from ppcls.arch.backbone.legendary_models.pp_lcnet_v2 import PPLCNetV2_base
|
||||
from ppcls.arch.backbone.legendary_models.esnet import ESNet_x0_25, ESNet_x0_5, ESNet_x0_75, ESNet_x1_0
|
||||
from ppcls.arch.backbone.legendary_models.pp_hgnet import PPHGNet_tiny, PPHGNet_small, PPHGNet_base
|
||||
from .legendary_models.mobilenet_v1 import MobileNetV1_x0_25, MobileNetV1_x0_5, MobileNetV1_x0_75, MobileNetV1
|
||||
from .legendary_models.mobilenet_v3 import MobileNetV3_small_x0_35, MobileNetV3_small_x0_5, MobileNetV3_small_x0_75, MobileNetV3_small_x1_0, MobileNetV3_small_x1_25, MobileNetV3_large_x0_35, MobileNetV3_large_x0_5, MobileNetV3_large_x0_75, MobileNetV3_large_x1_0, MobileNetV3_large_x1_25
|
||||
from .legendary_models.resnet import ResNet18, ResNet18_vd, ResNet34, ResNet34_vd, ResNet50, ResNet50_vd, ResNet101, ResNet101_vd, ResNet152, ResNet152_vd, ResNet200_vd
|
||||
from .legendary_models.vgg import VGG11, VGG13, VGG16, VGG19
|
||||
from .legendary_models.inception_v3 import InceptionV3
|
||||
from .legendary_models.hrnet import HRNet_W18_C, HRNet_W30_C, HRNet_W32_C, HRNet_W40_C, HRNet_W44_C, HRNet_W48_C, HRNet_W60_C, HRNet_W64_C, SE_HRNet_W64_C
|
||||
from .legendary_models.pp_lcnet import PPLCNet_x0_25, PPLCNet_x0_35, PPLCNet_x0_5, PPLCNet_x0_75, PPLCNet_x1_0, PPLCNet_x1_5, PPLCNet_x2_0, PPLCNet_x2_5
|
||||
from .legendary_models.pp_lcnet_v2 import PPLCNetV2_base
|
||||
from .legendary_models.esnet import ESNet_x0_25, ESNet_x0_5, ESNet_x0_75, ESNet_x1_0
|
||||
from .legendary_models.pp_hgnet import PPHGNet_tiny, PPHGNet_small, PPHGNet_base
|
||||
|
||||
from ppcls.arch.backbone.model_zoo.resnet_vc import ResNet50_vc
|
||||
from ppcls.arch.backbone.model_zoo.resnext import ResNeXt50_32x4d, ResNeXt50_64x4d, ResNeXt101_32x4d, ResNeXt101_64x4d, ResNeXt152_32x4d, ResNeXt152_64x4d
|
||||
from ppcls.arch.backbone.model_zoo.resnext_vd import ResNeXt50_vd_32x4d, ResNeXt50_vd_64x4d, ResNeXt101_vd_32x4d, ResNeXt101_vd_64x4d, ResNeXt152_vd_32x4d, ResNeXt152_vd_64x4d
|
||||
from ppcls.arch.backbone.model_zoo.res2net import Res2Net50_26w_4s, Res2Net50_14w_8s
|
||||
from ppcls.arch.backbone.model_zoo.res2net_vd import Res2Net50_vd_26w_4s, Res2Net101_vd_26w_4s, Res2Net200_vd_26w_4s
|
||||
from ppcls.arch.backbone.model_zoo.se_resnet_vd import SE_ResNet18_vd, SE_ResNet34_vd, SE_ResNet50_vd
|
||||
from ppcls.arch.backbone.model_zoo.se_resnext_vd import SE_ResNeXt50_vd_32x4d, SE_ResNeXt50_vd_32x4d, SENet154_vd
|
||||
from ppcls.arch.backbone.model_zoo.se_resnext import SE_ResNeXt50_32x4d, SE_ResNeXt101_32x4d, SE_ResNeXt152_64x4d
|
||||
from ppcls.arch.backbone.model_zoo.dpn import DPN68, DPN92, DPN98, DPN107, DPN131
|
||||
from ppcls.arch.backbone.model_zoo.densenet import DenseNet121, DenseNet161, DenseNet169, DenseNet201, DenseNet264
|
||||
from ppcls.arch.backbone.model_zoo.efficientnet import EfficientNetB0, EfficientNetB1, EfficientNetB2, EfficientNetB3, EfficientNetB4, EfficientNetB5, EfficientNetB6, EfficientNetB7, EfficientNetB0_small
|
||||
from ppcls.arch.backbone.model_zoo.resnest import ResNeSt50_fast_1s1x64d, ResNeSt50, ResNeSt101
|
||||
from ppcls.arch.backbone.model_zoo.googlenet import GoogLeNet
|
||||
from ppcls.arch.backbone.model_zoo.mobilenet_v2 import MobileNetV2_x0_25, MobileNetV2_x0_5, MobileNetV2_x0_75, MobileNetV2, MobileNetV2_x1_5, MobileNetV2_x2_0
|
||||
from ppcls.arch.backbone.model_zoo.shufflenet_v2 import ShuffleNetV2_x0_25, ShuffleNetV2_x0_33, ShuffleNetV2_x0_5, ShuffleNetV2_x1_0, ShuffleNetV2_x1_5, ShuffleNetV2_x2_0, ShuffleNetV2_swish
|
||||
from ppcls.arch.backbone.model_zoo.ghostnet import GhostNet_x0_5, GhostNet_x1_0, GhostNet_x1_3
|
||||
from ppcls.arch.backbone.model_zoo.alexnet import AlexNet
|
||||
from ppcls.arch.backbone.model_zoo.inception_v4 import InceptionV4
|
||||
from ppcls.arch.backbone.model_zoo.xception import Xception41, Xception65, Xception71
|
||||
from ppcls.arch.backbone.model_zoo.xception_deeplab import Xception41_deeplab, Xception65_deeplab
|
||||
from ppcls.arch.backbone.model_zoo.resnext101_wsl import ResNeXt101_32x8d_wsl, ResNeXt101_32x16d_wsl, ResNeXt101_32x32d_wsl, ResNeXt101_32x48d_wsl
|
||||
from ppcls.arch.backbone.model_zoo.squeezenet import SqueezeNet1_0, SqueezeNet1_1
|
||||
from ppcls.arch.backbone.model_zoo.darknet import DarkNet53
|
||||
from ppcls.arch.backbone.model_zoo.regnet import RegNetX_200MF, RegNetX_4GF, RegNetX_32GF, RegNetY_200MF, RegNetY_4GF, RegNetY_32GF
|
||||
from ppcls.arch.backbone.model_zoo.vision_transformer import ViT_small_patch16_224, ViT_base_patch16_224, ViT_base_patch16_384, ViT_base_patch32_384, ViT_large_patch16_224, ViT_large_patch16_384, ViT_large_patch32_384
|
||||
from ppcls.arch.backbone.model_zoo.distilled_vision_transformer import DeiT_tiny_patch16_224, DeiT_small_patch16_224, DeiT_base_patch16_224, DeiT_tiny_distilled_patch16_224, DeiT_small_distilled_patch16_224, DeiT_base_distilled_patch16_224, DeiT_base_patch16_384, DeiT_base_distilled_patch16_384
|
||||
from ppcls.arch.backbone.legendary_models.swin_transformer import SwinTransformer_tiny_patch4_window7_224, SwinTransformer_small_patch4_window7_224, SwinTransformer_base_patch4_window7_224, SwinTransformer_base_patch4_window12_384, SwinTransformer_large_patch4_window7_224, SwinTransformer_large_patch4_window12_384
|
||||
from ppcls.arch.backbone.model_zoo.cswin_transformer import CSWinTransformer_tiny_224, CSWinTransformer_small_224, CSWinTransformer_base_224, CSWinTransformer_large_224, CSWinTransformer_base_384, CSWinTransformer_large_384
|
||||
from ppcls.arch.backbone.model_zoo.mixnet import MixNet_S, MixNet_M, MixNet_L
|
||||
from ppcls.arch.backbone.model_zoo.rexnet import ReXNet_1_0, ReXNet_1_3, ReXNet_1_5, ReXNet_2_0, ReXNet_3_0
|
||||
from ppcls.arch.backbone.model_zoo.gvt import pcpvt_small, pcpvt_base, pcpvt_large, alt_gvt_small, alt_gvt_base, alt_gvt_large
|
||||
from ppcls.arch.backbone.model_zoo.levit import LeViT_128S, LeViT_128, LeViT_192, LeViT_256, LeViT_384
|
||||
from ppcls.arch.backbone.model_zoo.dla import DLA34, DLA46_c, DLA46x_c, DLA60, DLA60x, DLA60x_c, DLA102, DLA102x, DLA102x2, DLA169
|
||||
from ppcls.arch.backbone.model_zoo.rednet import RedNet26, RedNet38, RedNet50, RedNet101, RedNet152
|
||||
from ppcls.arch.backbone.model_zoo.tnt import TNT_small
|
||||
from ppcls.arch.backbone.model_zoo.hardnet import HarDNet68, HarDNet85, HarDNet39_ds, HarDNet68_ds
|
||||
from ppcls.arch.backbone.model_zoo.cspnet import CSPDarkNet53
|
||||
from ppcls.arch.backbone.model_zoo.pvt_v2 import PVT_V2_B0, PVT_V2_B1, PVT_V2_B2_Linear, PVT_V2_B2, PVT_V2_B3, PVT_V2_B4, PVT_V2_B5
|
||||
from ppcls.arch.backbone.model_zoo.mobilevit import MobileViT_XXS, MobileViT_XS, MobileViT_S
|
||||
from ppcls.arch.backbone.model_zoo.repvgg import RepVGG_A0, RepVGG_A1, RepVGG_A2, RepVGG_B0, RepVGG_B1, RepVGG_B2, RepVGG_B1g2, RepVGG_B1g4, RepVGG_B2g4, RepVGG_B3g4
|
||||
from ppcls.arch.backbone.model_zoo.van import VAN_tiny
|
||||
from ppcls.arch.backbone.variant_models.resnet_variant import ResNet50_last_stage_stride1
|
||||
from ppcls.arch.backbone.variant_models.vgg_variant import VGG19Sigmoid
|
||||
from ppcls.arch.backbone.variant_models.pp_lcnet_variant import PPLCNet_x2_5_Tanh
|
||||
from ppcls.arch.backbone.model_zoo.adaface_ir_net import AdaFace_IR_18, AdaFace_IR_34, AdaFace_IR_50, AdaFace_IR_101, AdaFace_IR_152, AdaFace_IR_SE_50, AdaFace_IR_SE_101, AdaFace_IR_SE_152, AdaFace_IR_SE_200
|
||||
from .model_zoo.resnet_vc import ResNet50_vc
|
||||
from .model_zoo.resnext import ResNeXt50_32x4d, ResNeXt50_64x4d, ResNeXt101_32x4d, ResNeXt101_64x4d, ResNeXt152_32x4d, ResNeXt152_64x4d
|
||||
from .model_zoo.resnext_vd import ResNeXt50_vd_32x4d, ResNeXt50_vd_64x4d, ResNeXt101_vd_32x4d, ResNeXt101_vd_64x4d, ResNeXt152_vd_32x4d, ResNeXt152_vd_64x4d
|
||||
from .model_zoo.res2net import Res2Net50_26w_4s, Res2Net50_14w_8s
|
||||
from .model_zoo.res2net_vd import Res2Net50_vd_26w_4s, Res2Net101_vd_26w_4s, Res2Net200_vd_26w_4s
|
||||
from .model_zoo.se_resnet_vd import SE_ResNet18_vd, SE_ResNet34_vd, SE_ResNet50_vd
|
||||
from .model_zoo.se_resnext_vd import SE_ResNeXt50_vd_32x4d, SE_ResNeXt50_vd_32x4d, SENet154_vd
|
||||
from .model_zoo.se_resnext import SE_ResNeXt50_32x4d, SE_ResNeXt101_32x4d, SE_ResNeXt152_64x4d
|
||||
from .model_zoo.dpn import DPN68, DPN92, DPN98, DPN107, DPN131
|
||||
from .model_zoo.densenet import DenseNet121, DenseNet161, DenseNet169, DenseNet201, DenseNet264
|
||||
from .model_zoo.efficientnet import EfficientNetB0, EfficientNetB1, EfficientNetB2, EfficientNetB3, EfficientNetB4, EfficientNetB5, EfficientNetB6, EfficientNetB7, EfficientNetB0_small
|
||||
from .model_zoo.resnest import ResNeSt50_fast_1s1x64d, ResNeSt50, ResNeSt101
|
||||
from .model_zoo.googlenet import GoogLeNet
|
||||
from .model_zoo.mobilenet_v2 import MobileNetV2_x0_25, MobileNetV2_x0_5, MobileNetV2_x0_75, MobileNetV2, MobileNetV2_x1_5, MobileNetV2_x2_0
|
||||
from .model_zoo.shufflenet_v2 import ShuffleNetV2_x0_25, ShuffleNetV2_x0_33, ShuffleNetV2_x0_5, ShuffleNetV2_x1_0, ShuffleNetV2_x1_5, ShuffleNetV2_x2_0, ShuffleNetV2_swish
|
||||
from .model_zoo.ghostnet import GhostNet_x0_5, GhostNet_x1_0, GhostNet_x1_3
|
||||
from .model_zoo.alexnet import AlexNet
|
||||
from .model_zoo.inception_v4 import InceptionV4
|
||||
from .model_zoo.xception import Xception41, Xception65, Xception71
|
||||
from .model_zoo.xception_deeplab import Xception41_deeplab, Xception65_deeplab
|
||||
from .model_zoo.resnext101_wsl import ResNeXt101_32x8d_wsl, ResNeXt101_32x16d_wsl, ResNeXt101_32x32d_wsl, ResNeXt101_32x48d_wsl
|
||||
from .model_zoo.squeezenet import SqueezeNet1_0, SqueezeNet1_1
|
||||
from .model_zoo.darknet import DarkNet53
|
||||
from .model_zoo.regnet import RegNetX_200MF, RegNetX_4GF, RegNetX_32GF, RegNetY_200MF, RegNetY_4GF, RegNetY_32GF
|
||||
from .model_zoo.vision_transformer import ViT_small_patch16_224, ViT_base_patch16_224, ViT_base_patch16_384, ViT_base_patch32_384, ViT_large_patch16_224, ViT_large_patch16_384, ViT_large_patch32_384
|
||||
from .model_zoo.distilled_vision_transformer import DeiT_tiny_patch16_224, DeiT_small_patch16_224, DeiT_base_patch16_224, DeiT_tiny_distilled_patch16_224, DeiT_small_distilled_patch16_224, DeiT_base_distilled_patch16_224, DeiT_base_patch16_384, DeiT_base_distilled_patch16_384
|
||||
from .legendary_models.swin_transformer import SwinTransformer_tiny_patch4_window7_224, SwinTransformer_small_patch4_window7_224, SwinTransformer_base_patch4_window7_224, SwinTransformer_base_patch4_window12_384, SwinTransformer_large_patch4_window7_224, SwinTransformer_large_patch4_window12_384
|
||||
from .model_zoo.cswin_transformer import CSWinTransformer_tiny_224, CSWinTransformer_small_224, CSWinTransformer_base_224, CSWinTransformer_large_224, CSWinTransformer_base_384, CSWinTransformer_large_384
|
||||
from .model_zoo.mixnet import MixNet_S, MixNet_M, MixNet_L
|
||||
from .model_zoo.rexnet import ReXNet_1_0, ReXNet_1_3, ReXNet_1_5, ReXNet_2_0, ReXNet_3_0
|
||||
from .model_zoo.gvt import pcpvt_small, pcpvt_base, pcpvt_large, alt_gvt_small, alt_gvt_base, alt_gvt_large
|
||||
from .model_zoo.levit import LeViT_128S, LeViT_128, LeViT_192, LeViT_256, LeViT_384
|
||||
from .model_zoo.dla import DLA34, DLA46_c, DLA46x_c, DLA60, DLA60x, DLA60x_c, DLA102, DLA102x, DLA102x2, DLA169
|
||||
from .model_zoo.rednet import RedNet26, RedNet38, RedNet50, RedNet101, RedNet152
|
||||
from .model_zoo.tnt import TNT_small
|
||||
from .model_zoo.hardnet import HarDNet68, HarDNet85, HarDNet39_ds, HarDNet68_ds
|
||||
from .model_zoo.cspnet import CSPDarkNet53
|
||||
from .model_zoo.pvt_v2 import PVT_V2_B0, PVT_V2_B1, PVT_V2_B2_Linear, PVT_V2_B2, PVT_V2_B3, PVT_V2_B4, PVT_V2_B5
|
||||
from .model_zoo.mobilevit import MobileViT_XXS, MobileViT_XS, MobileViT_S
|
||||
from .model_zoo.repvgg import RepVGG_A0, RepVGG_A1, RepVGG_A2, RepVGG_B0, RepVGG_B1, RepVGG_B2, RepVGG_B1g2, RepVGG_B1g4, RepVGG_B2g4, RepVGG_B3g4
|
||||
from .model_zoo.van import VAN_tiny
|
||||
from .variant_models.resnet_variant import ResNet50_last_stage_stride1
|
||||
from .variant_models.vgg_variant import VGG19Sigmoid
|
||||
from .variant_models.pp_lcnet_variant import PPLCNet_x2_5_Tanh
|
||||
from .model_zoo.adaface_ir_net import AdaFace_IR_18, AdaFace_IR_34, AdaFace_IR_50, AdaFace_IR_101, AdaFace_IR_152, AdaFace_IR_SE_50, AdaFace_IR_SE_101, AdaFace_IR_SE_152, AdaFace_IR_SE_200
|
||||
|
||||
|
||||
# help whl get all the models' api (class type) and components' api (func type)
|
||||
|
|
|
@ -15,7 +15,7 @@
|
|||
from typing import Tuple, List, Dict, Union, Callable, Any
|
||||
|
||||
from paddle import nn
|
||||
from ppcls.utils import logger
|
||||
from ....utils import logger
|
||||
|
||||
|
||||
class Identity(nn.Layer):
|
||||
|
|
|
@ -22,8 +22,8 @@ from paddle.nn import AdaptiveAvgPool2D, MaxPool2D
|
|||
from paddle.nn.initializer import KaimingNormal
|
||||
from paddle.regularizer import L2Decay
|
||||
|
||||
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ..base.theseus_layer import TheseusLayer
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"ESNet_x0_25":
|
||||
|
|
|
@ -25,8 +25,8 @@ from paddle import ParamAttr
|
|||
from paddle.nn.functional import upsample
|
||||
from paddle.nn.initializer import Uniform
|
||||
|
||||
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer, Identity
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ..base.theseus_layer import TheseusLayer, Identity
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"HRNet_W18_C":
|
||||
|
|
|
@ -23,8 +23,8 @@ from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
|
|||
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
|
||||
from paddle.nn.initializer import Uniform
|
||||
|
||||
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ..base.theseus_layer import TheseusLayer
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"InceptionV3":
|
||||
|
|
|
@ -22,8 +22,8 @@ from paddle.nn import Conv2D, BatchNorm, Linear, ReLU, Flatten
|
|||
from paddle.nn import AdaptiveAvgPool2D
|
||||
from paddle.nn.initializer import KaimingNormal
|
||||
|
||||
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ..base.theseus_layer import TheseusLayer
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"MobileNetV1_x0_25":
|
||||
|
|
|
@ -21,8 +21,9 @@ import paddle.nn as nn
|
|||
from paddle import ParamAttr
|
||||
from paddle.nn import AdaptiveAvgPool2D, BatchNorm, Conv2D, Dropout, Linear
|
||||
from paddle.regularizer import L2Decay
|
||||
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
from ..base.theseus_layer import TheseusLayer
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"MobileNetV3_small_x0_35":
|
||||
|
|
|
@ -20,8 +20,8 @@ from paddle.nn import Conv2D, BatchNorm2D, ReLU, AdaptiveAvgPool2D, MaxPool2D
|
|||
from paddle.regularizer import L2Decay
|
||||
from paddle import ParamAttr
|
||||
|
||||
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ..base.theseus_layer import TheseusLayer
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"PPHGNet_tiny":
|
||||
|
@ -199,6 +199,7 @@ class PPHGNet(TheseusLayer):
|
|||
Returns:
|
||||
model: nn.Layer. Specific PPHGNet model depends on args.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
stem_channels,
|
||||
stage_config,
|
||||
|
@ -230,7 +231,7 @@ class PPHGNet(TheseusLayer):
|
|||
k]
|
||||
self.stages.append(
|
||||
HG_Stage(in_channels, mid_channels, out_channels, block_num,
|
||||
layer_num, downsample))
|
||||
layer_num, downsample))
|
||||
|
||||
self.avg_pool = AdaptiveAvgPool2D(1)
|
||||
if self.use_last_conv:
|
||||
|
|
|
@ -20,8 +20,9 @@ from paddle import ParamAttr
|
|||
from paddle.nn import AdaptiveAvgPool2D, BatchNorm2D, Conv2D, Dropout, Linear
|
||||
from paddle.regularizer import L2Decay
|
||||
from paddle.nn.initializer import KaimingNormal
|
||||
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
from ..base.theseus_layer import TheseusLayer
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"PPLCNet_x0_25":
|
||||
|
@ -229,64 +230,59 @@ class PPLCNet(TheseusLayer):
|
|||
stride=stride_list[0],
|
||||
lr_mult=self.lr_mult_list[0])
|
||||
|
||||
self.blocks2 = nn.Sequential(*[
|
||||
self.blocks2 = nn.Sequential(* [
|
||||
DepthwiseSeparable(
|
||||
num_channels=make_divisible(in_c * scale),
|
||||
num_filters=make_divisible(out_c * scale),
|
||||
dw_size=k,
|
||||
stride=s,
|
||||
use_se=se,
|
||||
lr_mult=self.lr_mult_list[1])
|
||||
for i, (k, in_c, out_c, s, se
|
||||
) in enumerate(self.net_config["blocks2"])
|
||||
lr_mult=self.lr_mult_list[1]) for i, (k, in_c, out_c, s, se) in
|
||||
enumerate(self.net_config["blocks2"])
|
||||
])
|
||||
|
||||
self.blocks3 = nn.Sequential(*[
|
||||
self.blocks3 = nn.Sequential(* [
|
||||
DepthwiseSeparable(
|
||||
num_channels=make_divisible(in_c * scale),
|
||||
num_filters=make_divisible(out_c * scale),
|
||||
dw_size=k,
|
||||
stride=s,
|
||||
use_se=se,
|
||||
lr_mult=self.lr_mult_list[2])
|
||||
for i, (k, in_c, out_c, s, se
|
||||
) in enumerate(self.net_config["blocks3"])
|
||||
lr_mult=self.lr_mult_list[2]) for i, (k, in_c, out_c, s, se) in
|
||||
enumerate(self.net_config["blocks3"])
|
||||
])
|
||||
|
||||
self.blocks4 = nn.Sequential(*[
|
||||
self.blocks4 = nn.Sequential(* [
|
||||
DepthwiseSeparable(
|
||||
num_channels=make_divisible(in_c * scale),
|
||||
num_filters=make_divisible(out_c * scale),
|
||||
dw_size=k,
|
||||
stride=s,
|
||||
use_se=se,
|
||||
lr_mult=self.lr_mult_list[3])
|
||||
for i, (k, in_c, out_c, s, se
|
||||
) in enumerate(self.net_config["blocks4"])
|
||||
lr_mult=self.lr_mult_list[3]) for i, (k, in_c, out_c, s, se) in
|
||||
enumerate(self.net_config["blocks4"])
|
||||
])
|
||||
|
||||
self.blocks5 = nn.Sequential(*[
|
||||
self.blocks5 = nn.Sequential(* [
|
||||
DepthwiseSeparable(
|
||||
num_channels=make_divisible(in_c * scale),
|
||||
num_filters=make_divisible(out_c * scale),
|
||||
dw_size=k,
|
||||
stride=s,
|
||||
use_se=se,
|
||||
lr_mult=self.lr_mult_list[4])
|
||||
for i, (k, in_c, out_c, s, se
|
||||
) in enumerate(self.net_config["blocks5"])
|
||||
lr_mult=self.lr_mult_list[4]) for i, (k, in_c, out_c, s, se) in
|
||||
enumerate(self.net_config["blocks5"])
|
||||
])
|
||||
|
||||
self.blocks6 = nn.Sequential(*[
|
||||
self.blocks6 = nn.Sequential(* [
|
||||
DepthwiseSeparable(
|
||||
num_channels=make_divisible(in_c * scale),
|
||||
num_filters=make_divisible(out_c * scale),
|
||||
dw_size=k,
|
||||
stride=s,
|
||||
use_se=se,
|
||||
lr_mult=self.lr_mult_list[5])
|
||||
for i, (k, in_c, out_c, s, se
|
||||
) in enumerate(self.net_config["blocks6"])
|
||||
lr_mult=self.lr_mult_list[5]) for i, (k, in_c, out_c, s, se) in
|
||||
enumerate(self.net_config["blocks6"])
|
||||
])
|
||||
|
||||
self.avg_pool = AdaptiveAvgPool2D(1)
|
||||
|
|
|
@ -21,8 +21,9 @@ from paddle import ParamAttr
|
|||
from paddle.nn import AdaptiveAvgPool2D, BatchNorm2D, Conv2D, Dropout, Linear
|
||||
from paddle.regularizer import L2Decay
|
||||
from paddle.nn.initializer import KaimingNormal
|
||||
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
from ..base.theseus_layer import TheseusLayer
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"PPLCNetV2_base":
|
||||
|
|
|
@ -26,9 +26,9 @@ from paddle.nn.initializer import Uniform
|
|||
from paddle.regularizer import L2Decay
|
||||
import math
|
||||
|
||||
from ppcls.utils import logger
|
||||
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils import logger
|
||||
from ..base.theseus_layer import TheseusLayer
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"ResNet18":
|
||||
|
@ -328,7 +328,7 @@ class ResNet(TheseusLayer):
|
|||
[32, 32, 3, 1], [32, 64, 3, 1]]
|
||||
}
|
||||
|
||||
self.stem = nn.Sequential(*[
|
||||
self.stem = nn.Sequential(* [
|
||||
ConvBNLayer(
|
||||
num_channels=in_c,
|
||||
num_filters=out_c,
|
||||
|
|
|
@ -21,9 +21,9 @@ import paddle.nn as nn
|
|||
import paddle.nn.functional as F
|
||||
from paddle.nn.initializer import TruncatedNormal, Constant
|
||||
|
||||
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
|
||||
from ppcls.arch.backbone.model_zoo.vision_transformer import trunc_normal_, zeros_, ones_, to_2tuple, DropPath, Identity
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ..model_zoo.vision_transformer import trunc_normal_, zeros_, ones_, to_2tuple, DropPath, Identity
|
||||
from ..base.theseus_layer import TheseusLayer
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"SwinTransformer_tiny_patch4_window7_224":
|
||||
|
|
|
@ -20,8 +20,8 @@ import paddle.nn as nn
|
|||
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
|
||||
from paddle.nn import MaxPool2D
|
||||
|
||||
from ppcls.arch.backbone.base.theseus_layer import TheseusLayer
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ..base.theseus_layer import TheseusLayer
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"VGG11":
|
||||
|
|
|
@ -23,7 +23,7 @@ from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
|
|||
from paddle.nn.initializer import Uniform
|
||||
import math
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"AlexNet":
|
||||
|
|
|
@ -0,0 +1,232 @@
|
|||
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
# Code was heavily based on https://github.com/facebookresearch/ConvNeXt
|
||||
|
||||
import paddle
|
||||
import paddle.nn as nn
|
||||
from paddle.nn.initializer import TruncatedNormal, Constant
|
||||
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"ConvNeXt_tiny": "", # TODO
|
||||
}
|
||||
|
||||
__all__ = list(MODEL_URLS.keys())
|
||||
|
||||
trunc_normal_ = TruncatedNormal(std=.02)
|
||||
zeros_ = Constant(value=0.)
|
||||
ones_ = Constant(value=1.)
|
||||
|
||||
|
||||
def drop_path(x, drop_prob=0., training=False):
|
||||
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
||||
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
||||
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ...
|
||||
"""
|
||||
if drop_prob == 0. or not training:
|
||||
return x
|
||||
keep_prob = paddle.to_tensor(1 - drop_prob)
|
||||
shape = (paddle.shape(x)[0], ) + (1, ) * (x.ndim - 1)
|
||||
random_tensor = keep_prob + paddle.rand(shape, dtype=x.dtype)
|
||||
random_tensor = paddle.floor(random_tensor) # binarize
|
||||
output = x.divide(keep_prob) * random_tensor
|
||||
return output
|
||||
|
||||
|
||||
class DropPath(nn.Layer):
|
||||
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
||||
"""
|
||||
|
||||
def __init__(self, drop_prob=None):
|
||||
super(DropPath, self).__init__()
|
||||
self.drop_prob = drop_prob
|
||||
|
||||
def forward(self, x):
|
||||
return drop_path(x, self.drop_prob, self.training)
|
||||
|
||||
|
||||
class ChannelsFirstLayerNorm(nn.Layer):
|
||||
r""" LayerNorm that supports two data formats: channels_last (default) or channels_first.
|
||||
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
|
||||
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
|
||||
with shape (batch_size, channels, height, width).
|
||||
"""
|
||||
|
||||
def __init__(self, normalized_shape, epsilon=1e-5):
|
||||
super().__init__()
|
||||
self.weight = self.create_parameter(
|
||||
shape=[normalized_shape], default_initializer=ones_)
|
||||
self.bias = self.create_parameter(
|
||||
shape=[normalized_shape], default_initializer=zeros_)
|
||||
self.epsilon = epsilon
|
||||
self.normalized_shape = [normalized_shape]
|
||||
|
||||
def forward(self, x):
|
||||
u = x.mean(1, keepdim=True)
|
||||
s = (x - u).pow(2).mean(1, keepdim=True)
|
||||
x = (x - u) / paddle.sqrt(s + self.epsilon)
|
||||
x = self.weight[:, None, None] * x + self.bias[:, None, None]
|
||||
return x
|
||||
|
||||
|
||||
class Block(nn.Layer):
|
||||
r""" ConvNeXt Block. There are two equivalent implementations:
|
||||
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
|
||||
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
|
||||
We use (2) as we find it slightly faster in PyTorch
|
||||
|
||||
Args:
|
||||
dim (int): Number of input channels.
|
||||
drop_path (float): Stochastic depth rate. Default: 0.0
|
||||
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
|
||||
"""
|
||||
|
||||
def __init__(self, dim, drop_path=0., layer_scale_init_value=1e-6):
|
||||
super().__init__()
|
||||
self.dwconv = nn.Conv2D(
|
||||
dim, dim, 7, padding=3, groups=dim) # depthwise conv
|
||||
self.norm = nn.LayerNorm(dim, epsilon=1e-6)
|
||||
# pointwise/1x1 convs, implemented with linear layers
|
||||
self.pwconv1 = nn.Linear(dim, 4 * dim)
|
||||
self.act = nn.GELU()
|
||||
self.pwconv2 = nn.Linear(4 * dim, dim)
|
||||
if layer_scale_init_value > 0:
|
||||
self.gamma = self.create_parameter(
|
||||
shape=[dim],
|
||||
default_initializer=Constant(value=layer_scale_init_value))
|
||||
else:
|
||||
self.gamma = None
|
||||
self.drop_path = DropPath(
|
||||
drop_path) if drop_path > 0. else nn.Identity()
|
||||
|
||||
def forward(self, x):
|
||||
input = x
|
||||
x = self.dwconv(x)
|
||||
x = x.transpose([0, 2, 3, 1]) # (N, C, H, W) -> (N, H, W, C)
|
||||
x = self.norm(x)
|
||||
x = self.pwconv1(x)
|
||||
x = self.act(x)
|
||||
x = self.pwconv2(x)
|
||||
if self.gamma is not None:
|
||||
x = self.gamma * x
|
||||
x = x.transpose([0, 3, 1, 2]) # (N, H, W, C) -> (N, C, H, W)
|
||||
|
||||
x = input + self.drop_path(x)
|
||||
return x
|
||||
|
||||
|
||||
class ConvNeXt(nn.Layer):
|
||||
r""" ConvNeXt
|
||||
A PaddlePaddle impl of : `A ConvNet for the 2020s` -
|
||||
https://arxiv.org/pdf/2201.03545.pdf
|
||||
|
||||
Args:
|
||||
in_chans (int): Number of input image channels. Default: 3
|
||||
class_num (int): Number of classes for classification head. Default: 1000
|
||||
depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]
|
||||
dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768]
|
||||
drop_path_rate (float): Stochastic depth rate. Default: 0.
|
||||
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
|
||||
head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
in_chans=3,
|
||||
class_num=1000,
|
||||
depths=[3, 3, 9, 3],
|
||||
dims=[96, 192, 384, 768],
|
||||
drop_path_rate=0.,
|
||||
layer_scale_init_value=1e-6,
|
||||
head_init_scale=1.):
|
||||
super().__init__()
|
||||
|
||||
# stem and 3 intermediate downsampling conv layers
|
||||
self.downsample_layers = nn.LayerList()
|
||||
stem = nn.Sequential(
|
||||
nn.Conv2D(
|
||||
in_chans, dims[0], 4, stride=4),
|
||||
ChannelsFirstLayerNorm(
|
||||
dims[0], epsilon=1e-6))
|
||||
self.downsample_layers.append(stem)
|
||||
for i in range(3):
|
||||
downsample_layer = nn.Sequential(
|
||||
ChannelsFirstLayerNorm(
|
||||
dims[i], epsilon=1e-6),
|
||||
nn.Conv2D(
|
||||
dims[i], dims[i + 1], 2, stride=2), )
|
||||
self.downsample_layers.append(downsample_layer)
|
||||
|
||||
# 4 feature resolution stages, each consisting of multiple residual blocks
|
||||
self.stages = nn.LayerList()
|
||||
dp_rates = [
|
||||
x.item() for x in paddle.linspace(0, drop_path_rate, sum(depths))
|
||||
]
|
||||
cur = 0
|
||||
for i in range(4):
|
||||
stage = nn.Sequential(* [
|
||||
Block(
|
||||
dim=dims[i],
|
||||
drop_path=dp_rates[cur + j],
|
||||
layer_scale_init_value=layer_scale_init_value)
|
||||
for j in range(depths[i])
|
||||
])
|
||||
self.stages.append(stage)
|
||||
cur += depths[i]
|
||||
|
||||
self.norm = nn.LayerNorm(dims[-1], epsilon=1e-6) # final norm layer
|
||||
self.head = nn.Linear(dims[-1], class_num)
|
||||
|
||||
self.apply(self._init_weights)
|
||||
self.head.weight.set_value(self.head.weight * head_init_scale)
|
||||
self.head.bias.set_value(self.head.bias * head_init_scale)
|
||||
|
||||
def _init_weights(self, m):
|
||||
if isinstance(m, (nn.Conv2D, nn.Linear)):
|
||||
trunc_normal_(m.weight)
|
||||
if m.bias is not None:
|
||||
zeros_(m.bias)
|
||||
|
||||
def forward_features(self, x):
|
||||
for i in range(4):
|
||||
x = self.downsample_layers[i](x)
|
||||
x = self.stages[i](x)
|
||||
# global average pooling, (N, C, H, W) -> (N, C)
|
||||
return self.norm(x.mean([-2, -1]))
|
||||
|
||||
def forward(self, x):
|
||||
x = self.forward_features(x)
|
||||
x = self.head(x)
|
||||
return x
|
||||
|
||||
|
||||
def _load_pretrained(pretrained, model, model_url, use_ssld=False):
|
||||
if pretrained is False:
|
||||
pass
|
||||
elif pretrained is True:
|
||||
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
|
||||
elif isinstance(pretrained, str):
|
||||
load_dygraph_pretrain(model, pretrained)
|
||||
else:
|
||||
raise RuntimeError(
|
||||
"pretrained type is not available. Please use `string` or `boolean` type."
|
||||
)
|
||||
|
||||
|
||||
def ConvNeXt_tiny(pretrained=False, use_ssld=False, **kwargs):
|
||||
model = ConvNeXt(depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], **kwargs)
|
||||
_load_pretrained(
|
||||
pretrained, model, MODEL_URLS["ConvNeXt_tiny"], use_ssld=use_ssld)
|
||||
return model
|
|
@ -20,7 +20,7 @@ import paddle.nn as nn
|
|||
import paddle.nn.functional as F
|
||||
from paddle import ParamAttr
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"CSPDarkNet53":
|
||||
|
|
|
@ -21,7 +21,7 @@ import paddle
|
|||
import paddle.nn as nn
|
||||
from .vision_transformer import trunc_normal_, zeros_, ones_, to_2tuple, DropPath, Identity
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"CSWinTransformer_tiny_224":
|
||||
|
|
|
@ -23,7 +23,7 @@ from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
|
|||
from paddle.nn.initializer import Uniform
|
||||
import math
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"DarkNet53":
|
||||
|
|
|
@ -28,7 +28,7 @@ from paddle.nn.initializer import Uniform
|
|||
|
||||
import math
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"DenseNet121":
|
||||
|
|
|
@ -19,7 +19,7 @@ import paddle
|
|||
import paddle.nn as nn
|
||||
from .vision_transformer import VisionTransformer, Identity, trunc_normal_, zeros_
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"DeiT_tiny_patch16_224":
|
||||
|
|
|
@ -23,8 +23,8 @@ import paddle.nn.functional as F
|
|||
|
||||
from paddle.nn.initializer import Normal, Constant
|
||||
|
||||
from ppcls.arch.backbone.base.theseus_layer import Identity
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ..base.theseus_layer import Identity
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"DLA34":
|
||||
|
|
|
@ -29,7 +29,7 @@ from paddle.nn.initializer import Uniform
|
|||
|
||||
import math
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"DPN68":
|
||||
|
|
|
@ -26,7 +26,7 @@ import collections
|
|||
import re
|
||||
import copy
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"EfficientNetB0_small":
|
||||
|
|
|
@ -24,7 +24,7 @@ from paddle.nn import Conv2D, BatchNorm, AdaptiveAvgPool2D, Linear
|
|||
from paddle.regularizer import L2Decay
|
||||
from paddle.nn.initializer import Uniform, KaimingNormal
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"GhostNet_x0_5":
|
||||
|
|
|
@ -24,7 +24,7 @@ from paddle.nn.initializer import Uniform
|
|||
|
||||
import math
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"GoogLeNet":
|
||||
|
|
|
@ -25,7 +25,7 @@ from paddle.regularizer import L2Decay
|
|||
from .vision_transformer import trunc_normal_, normal_, zeros_, ones_, to_2tuple, DropPath, Identity, Mlp
|
||||
from .vision_transformer import Block as ViTBlock
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"pcpvt_small":
|
||||
|
|
|
@ -18,7 +18,7 @@
|
|||
import paddle
|
||||
import paddle.nn as nn
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
'HarDNet39_ds':
|
||||
|
|
|
@ -23,7 +23,7 @@ from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
|
|||
from paddle.nn.initializer import Uniform
|
||||
import math
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"InceptionV4":
|
||||
|
|
|
@ -27,7 +27,7 @@ from paddle.regularizer import L2Decay
|
|||
|
||||
from .vision_transformer import trunc_normal_, zeros_, ones_, Identity
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"LeViT_128S":
|
||||
|
|
|
@ -20,7 +20,7 @@ from functools import reduce
|
|||
import paddle
|
||||
import paddle.nn as nn
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"MixNet_S":
|
||||
|
|
|
@ -28,7 +28,7 @@ from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
|
|||
|
||||
import math
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"MobileNetV2_x0_25":
|
||||
|
|
|
@ -23,7 +23,7 @@ import paddle.nn.functional as F
|
|||
from paddle.nn.initializer import KaimingUniform, TruncatedNormal, Constant
|
||||
import math
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"MobileViT_XXS":
|
||||
|
|
|
@ -0,0 +1,263 @@
|
|||
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
# Code was heavily based on https://github.com/Robert-JunWang/PeleeNet
|
||||
# reference: https://arxiv.org/pdf/1804.06882.pdf
|
||||
|
||||
import math
|
||||
|
||||
import paddle
|
||||
import paddle.nn as nn
|
||||
import paddle.nn.functional as F
|
||||
from paddle.nn.initializer import Normal, Constant
|
||||
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"PeleeNet": "" # TODO
|
||||
}
|
||||
|
||||
__all__ = MODEL_URLS.keys()
|
||||
|
||||
normal_ = lambda x, mean=0, std=1: Normal(mean, std)(x)
|
||||
constant_ = lambda x, value=0: Constant(value)(x)
|
||||
zeros_ = Constant(value=0.)
|
||||
ones_ = Constant(value=1.)
|
||||
|
||||
|
||||
class _DenseLayer(nn.Layer):
|
||||
def __init__(self, num_input_features, growth_rate, bottleneck_width,
|
||||
drop_rate):
|
||||
super(_DenseLayer, self).__init__()
|
||||
|
||||
growth_rate = int(growth_rate / 2)
|
||||
inter_channel = int(growth_rate * bottleneck_width / 4) * 4
|
||||
|
||||
if inter_channel > num_input_features / 2:
|
||||
inter_channel = int(num_input_features / 8) * 4
|
||||
print('adjust inter_channel to ', inter_channel)
|
||||
|
||||
self.branch1a = BasicConv2D(
|
||||
num_input_features, inter_channel, kernel_size=1)
|
||||
self.branch1b = BasicConv2D(
|
||||
inter_channel, growth_rate, kernel_size=3, padding=1)
|
||||
|
||||
self.branch2a = BasicConv2D(
|
||||
num_input_features, inter_channel, kernel_size=1)
|
||||
self.branch2b = BasicConv2D(
|
||||
inter_channel, growth_rate, kernel_size=3, padding=1)
|
||||
self.branch2c = BasicConv2D(
|
||||
growth_rate, growth_rate, kernel_size=3, padding=1)
|
||||
|
||||
def forward(self, x):
|
||||
branch1 = self.branch1a(x)
|
||||
branch1 = self.branch1b(branch1)
|
||||
|
||||
branch2 = self.branch2a(x)
|
||||
branch2 = self.branch2b(branch2)
|
||||
branch2 = self.branch2c(branch2)
|
||||
|
||||
return paddle.concat([x, branch1, branch2], 1)
|
||||
|
||||
|
||||
class _DenseBlock(nn.Sequential):
|
||||
def __init__(self, num_layers, num_input_features, bn_size, growth_rate,
|
||||
drop_rate):
|
||||
super(_DenseBlock, self).__init__()
|
||||
for i in range(num_layers):
|
||||
layer = _DenseLayer(num_input_features + i * growth_rate,
|
||||
growth_rate, bn_size, drop_rate)
|
||||
setattr(self, 'denselayer%d' % (i + 1), layer)
|
||||
|
||||
|
||||
class _StemBlock(nn.Layer):
|
||||
def __init__(self, num_input_channels, num_init_features):
|
||||
super(_StemBlock, self).__init__()
|
||||
|
||||
num_stem_features = int(num_init_features / 2)
|
||||
|
||||
self.stem1 = BasicConv2D(
|
||||
num_input_channels,
|
||||
num_init_features,
|
||||
kernel_size=3,
|
||||
stride=2,
|
||||
padding=1)
|
||||
self.stem2a = BasicConv2D(
|
||||
num_init_features,
|
||||
num_stem_features,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
self.stem2b = BasicConv2D(
|
||||
num_stem_features,
|
||||
num_init_features,
|
||||
kernel_size=3,
|
||||
stride=2,
|
||||
padding=1)
|
||||
self.stem3 = BasicConv2D(
|
||||
2 * num_init_features,
|
||||
num_init_features,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0)
|
||||
self.pool = nn.MaxPool2D(kernel_size=2, stride=2)
|
||||
|
||||
def forward(self, x):
|
||||
out = self.stem1(x)
|
||||
|
||||
branch2 = self.stem2a(out)
|
||||
branch2 = self.stem2b(branch2)
|
||||
branch1 = self.pool(out)
|
||||
|
||||
out = paddle.concat([branch1, branch2], 1)
|
||||
out = self.stem3(out)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class BasicConv2D(nn.Layer):
|
||||
def __init__(self, in_channels, out_channels, activation=True, **kwargs):
|
||||
super(BasicConv2D, self).__init__()
|
||||
self.conv = nn.Conv2D(
|
||||
in_channels, out_channels, bias_attr=False, **kwargs)
|
||||
self.norm = nn.BatchNorm2D(out_channels)
|
||||
self.activation = activation
|
||||
|
||||
def forward(self, x):
|
||||
x = self.conv(x)
|
||||
x = self.norm(x)
|
||||
if self.activation:
|
||||
return F.relu(x)
|
||||
else:
|
||||
return x
|
||||
|
||||
|
||||
class PeleeNetDY(nn.Layer):
|
||||
r"""PeleeNet model class, based on
|
||||
`"Densely Connected Convolutional Networks" <https://arxiv.org/pdf/1608.06993.pdf> and
|
||||
"Pelee: A Real-Time Object Detection System on Mobile Devices" <https://arxiv.org/pdf/1804.06882.pdf>`
|
||||
|
||||
Args:
|
||||
growth_rate (int or list of 4 ints) - how many filters to add each layer (`k` in paper)
|
||||
block_config (list of 4 ints) - how many layers in each pooling block
|
||||
num_init_features (int) - the number of filters to learn in the first convolution layer
|
||||
bottleneck_width (int or list of 4 ints) - multiplicative factor for number of bottle neck layers
|
||||
(i.e. bn_size * k features in the bottleneck layer)
|
||||
drop_rate (float) - dropout rate after each dense layer
|
||||
class_num (int) - number of classification classes
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
growth_rate=32,
|
||||
block_config=[3, 4, 8, 6],
|
||||
num_init_features=32,
|
||||
bottleneck_width=[1, 2, 4, 4],
|
||||
drop_rate=0.05,
|
||||
class_num=1000):
|
||||
|
||||
super(PeleeNetDY, self).__init__()
|
||||
|
||||
self.features = nn.Sequential(* [('stemblock', _StemBlock(
|
||||
3, num_init_features)), ])
|
||||
|
||||
if type(growth_rate) is list:
|
||||
growth_rates = growth_rate
|
||||
assert len(growth_rates) == 4, \
|
||||
'The growth rate must be the list and the size must be 4'
|
||||
else:
|
||||
growth_rates = [growth_rate] * 4
|
||||
|
||||
if type(bottleneck_width) is list:
|
||||
bottleneck_widths = bottleneck_width
|
||||
assert len(bottleneck_widths) == 4, \
|
||||
'The bottleneck width must be the list and the size must be 4'
|
||||
else:
|
||||
bottleneck_widths = [bottleneck_width] * 4
|
||||
|
||||
# Each denseblock
|
||||
num_features = num_init_features
|
||||
for i, num_layers in enumerate(block_config):
|
||||
block = _DenseBlock(
|
||||
num_layers=num_layers,
|
||||
num_input_features=num_features,
|
||||
bn_size=bottleneck_widths[i],
|
||||
growth_rate=growth_rates[i],
|
||||
drop_rate=drop_rate)
|
||||
setattr(self.features, 'denseblock%d' % (i + 1), block)
|
||||
num_features = num_features + num_layers * growth_rates[i]
|
||||
|
||||
setattr(
|
||||
self.features,
|
||||
'transition%d' % (i + 1),
|
||||
BasicConv2D(
|
||||
num_features,
|
||||
num_features,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=0))
|
||||
|
||||
if i != len(block_config) - 1:
|
||||
setattr(
|
||||
self.features,
|
||||
'transition%d_pool' % (i + 1),
|
||||
nn.AvgPool2D(
|
||||
kernel_size=2, stride=2))
|
||||
num_features = num_features
|
||||
|
||||
# Linear layer
|
||||
self.classifier = nn.Linear(num_features, class_num)
|
||||
self.drop_rate = drop_rate
|
||||
|
||||
self.apply(self._initialize_weights)
|
||||
|
||||
def forward(self, x):
|
||||
features = self.features(x)
|
||||
out = F.avg_pool2d(
|
||||
features, kernel_size=features.shape[2:4]).flatten(1)
|
||||
if self.drop_rate > 0:
|
||||
out = F.dropout(out, p=self.drop_rate, training=self.training)
|
||||
out = self.classifier(out)
|
||||
return out
|
||||
|
||||
def _initialize_weights(self, m):
|
||||
if isinstance(m, nn.Conv2D):
|
||||
n = m._kernel_size[0] * m._kernel_size[1] * m._out_channels
|
||||
normal_(m.weight, std=math.sqrt(2. / n))
|
||||
if m.bias is not None:
|
||||
zeros_(m.bias)
|
||||
elif isinstance(m, nn.BatchNorm2D):
|
||||
ones_(m.weight)
|
||||
zeros_(m.bias)
|
||||
elif isinstance(m, nn.Linear):
|
||||
normal_(m.weight, std=0.01)
|
||||
zeros_(m.bias)
|
||||
|
||||
|
||||
def _load_pretrained(pretrained, model, model_url, use_ssld):
|
||||
if pretrained is False:
|
||||
pass
|
||||
elif pretrained is True:
|
||||
load_dygraph_pretrain_from_url(model, model_url, use_ssld=use_ssld)
|
||||
elif isinstance(pretrained, str):
|
||||
load_dygraph_pretrain(model, pretrained)
|
||||
else:
|
||||
raise RuntimeError(
|
||||
"pretrained type is not available. Please use `string` or `boolean` type."
|
||||
)
|
||||
|
||||
|
||||
def PeleeNet(pretrained=False, use_ssld=False, **kwargs):
|
||||
model = PeleeNetDY(**kwargs)
|
||||
_load_pretrained(pretrained, model, MODEL_URLS["PeleeNet"], use_ssld)
|
||||
return model
|
|
@ -24,7 +24,7 @@ from paddle.nn.initializer import TruncatedNormal, Constant
|
|||
|
||||
from .vision_transformer import trunc_normal_, zeros_, ones_, to_2tuple, DropPath, Identity, drop_path
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"PVT_V2_B0":
|
||||
|
|
|
@ -20,7 +20,7 @@ import paddle.nn as nn
|
|||
|
||||
from paddle.vision.models import resnet
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"RedNet26":
|
||||
|
|
|
@ -29,7 +29,7 @@ from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
|
|||
from paddle.nn.initializer import Uniform
|
||||
import math
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"RegNetX_200MF":
|
||||
|
|
|
@ -19,7 +19,7 @@ import paddle.nn as nn
|
|||
import paddle
|
||||
import numpy as np
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"RepVGG_A0":
|
||||
|
|
|
@ -29,7 +29,7 @@ from paddle.nn.initializer import Uniform
|
|||
|
||||
import math
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"Res2Net50_26w_4s":
|
||||
|
|
|
@ -29,7 +29,7 @@ from paddle.nn.initializer import Uniform
|
|||
|
||||
import math
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"Res2Net50_vd_26w_4s":
|
||||
|
|
|
@ -30,7 +30,7 @@ from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
|
|||
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
|
||||
from paddle.regularizer import L2Decay
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"ResNeSt50_fast_1s1x64d":
|
||||
|
|
|
@ -29,7 +29,7 @@ from paddle.nn.initializer import Uniform
|
|||
|
||||
import math
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"ResNet50_vc":
|
||||
|
|
|
@ -29,7 +29,7 @@ from paddle.nn.initializer import Uniform
|
|||
|
||||
import math
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"ResNeXt50_32x4d":
|
||||
|
|
|
@ -22,7 +22,7 @@ from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
|
|||
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
|
||||
from paddle.nn.initializer import Uniform
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"ResNeXt101_32x8d_wsl":
|
||||
|
|
|
@ -29,7 +29,7 @@ from paddle.nn.initializer import Uniform
|
|||
|
||||
import math
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"ResNeXt50_vd_32x4d":
|
||||
|
|
|
@ -24,7 +24,7 @@ from paddle import ParamAttr
|
|||
import paddle.nn as nn
|
||||
from math import ceil
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"ReXNet_1_0":
|
||||
|
|
|
@ -28,7 +28,7 @@ from paddle.nn.initializer import Uniform
|
|||
|
||||
import math
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"SE_ResNet18_vd":
|
||||
|
|
|
@ -29,7 +29,7 @@ from paddle.nn.initializer import Uniform
|
|||
|
||||
import math
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"SE_ResNeXt50_32x4d":
|
||||
|
|
|
@ -29,7 +29,7 @@ from paddle.nn.initializer import Uniform
|
|||
|
||||
import math
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"SE_ResNeXt50_vd_32x4d":
|
||||
|
|
|
@ -24,7 +24,7 @@ from paddle.nn import Layer, Conv2D, MaxPool2D, AdaptiveAvgPool2D, BatchNorm, Li
|
|||
from paddle.nn.initializer import KaimingNormal
|
||||
from paddle.nn.functional import swish
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"ShuffleNetV2_x0_25":
|
||||
|
|
|
@ -21,7 +21,7 @@ import paddle.nn.functional as F
|
|||
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
|
||||
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"SqueezeNet1_0":
|
||||
|
|
|
@ -23,8 +23,8 @@ import paddle.nn as nn
|
|||
|
||||
from paddle.nn.initializer import TruncatedNormal, Constant
|
||||
|
||||
from ppcls.arch.backbone.base.theseus_layer import Identity
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ..base.theseus_layer import Identity
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"TNT_small":
|
||||
|
|
|
@ -21,7 +21,7 @@ import paddle
|
|||
import paddle.nn as nn
|
||||
from paddle.nn.initializer import TruncatedNormal, Constant
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"VAN_tiny": "", # TODO
|
||||
|
|
|
@ -22,7 +22,7 @@ import paddle
|
|||
import paddle.nn as nn
|
||||
from paddle.nn.initializer import TruncatedNormal, Constant, Normal
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"ViT_small_patch16_224":
|
||||
|
|
|
@ -24,7 +24,7 @@ from paddle.nn.initializer import Uniform
|
|||
import math
|
||||
import sys
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"Xception41":
|
||||
|
|
|
@ -21,7 +21,7 @@ import paddle.nn.functional as F
|
|||
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
|
||||
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
|
||||
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
from ....utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
|
||||
|
||||
MODEL_URLS = {
|
||||
"Xception41_deeplab":
|
||||
|
|
|
@ -1,7 +1,7 @@
|
|||
import paddle
|
||||
from paddle.nn import Sigmoid
|
||||
from paddle.nn import Tanh
|
||||
from ppcls.arch.backbone.legendary_models.pp_lcnet import PPLCNet_x2_5
|
||||
from ..legendary_models.pp_lcnet import PPLCNet_x2_5
|
||||
|
||||
__all__ = ["PPLCNet_x2_5_Tanh"]
|
||||
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
from paddle.nn import Conv2D
|
||||
from ppcls.arch.backbone.legendary_models.resnet import ResNet50, MODEL_URLS, _load_pretrained
|
||||
from ..legendary_models.resnet import ResNet50, MODEL_URLS, _load_pretrained
|
||||
|
||||
__all__ = ["ResNet50_last_stage_stride1"]
|
||||
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
import paddle
|
||||
from paddle.nn import Sigmoid
|
||||
from ppcls.arch.backbone.legendary_models.vgg import VGG19
|
||||
from ..legendary_models.vgg import VGG19
|
||||
|
||||
__all__ = ["VGG19Sigmoid"]
|
||||
|
||||
|
|
|
@ -17,7 +17,7 @@ from __future__ import absolute_import, division, print_function
|
|||
import paddle
|
||||
import paddle.nn as nn
|
||||
|
||||
from ppcls.arch.utils import get_param_attr_dict
|
||||
from ..utils import get_param_attr_dict
|
||||
|
||||
|
||||
class BNNeck(nn.Layer):
|
||||
|
|
|
@ -19,7 +19,7 @@ from __future__ import print_function
|
|||
import paddle
|
||||
import paddle.nn as nn
|
||||
|
||||
from ppcls.arch.utils import get_param_attr_dict
|
||||
from ..utils import get_param_attr_dict
|
||||
|
||||
|
||||
class FC(nn.Layer):
|
||||
|
|
|
@ -12,5 +12,5 @@
|
|||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from ppcls.arch.slim.prune import prune_model
|
||||
from ppcls.arch.slim.quant import quantize_model
|
||||
from .prune import prune_model
|
||||
from .quant import quantize_model
|
||||
|
|
|
@ -14,7 +14,7 @@
|
|||
|
||||
from __future__ import absolute_import, division, print_function
|
||||
import paddle
|
||||
from ppcls.utils import logger
|
||||
from ...utils import logger
|
||||
|
||||
|
||||
def prune_model(config, model):
|
||||
|
@ -37,7 +37,6 @@ def prune_model(config, model):
|
|||
model.pruner = None
|
||||
|
||||
|
||||
|
||||
def _prune_model(config, model):
|
||||
from paddleslim.analysis import dygraph_flops as flops
|
||||
logger.info("FLOPs before pruning: {}GFLOPs".format(
|
||||
|
|
|
@ -14,7 +14,7 @@
|
|||
|
||||
from __future__ import absolute_import, division, print_function
|
||||
import paddle
|
||||
from ppcls.utils import logger
|
||||
from ...utils import logger
|
||||
|
||||
QUANT_CONFIG = {
|
||||
# weight preprocess type, default is None and no preprocessing is performed.
|
||||
|
|
|
@ -22,8 +22,8 @@ import sys
|
|||
import paddle
|
||||
from paddle import is_compiled_with_cuda
|
||||
|
||||
from ppcls.arch.utils import get_architectures, similar_architectures, get_blacklist_model_in_static_mode
|
||||
from ppcls.utils import logger
|
||||
from ..arch.utils import get_architectures, similar_architectures, get_blacklist_model_in_static_mode
|
||||
from . import logger
|
||||
|
||||
|
||||
def check_version():
|
||||
|
|
|
@ -16,8 +16,9 @@ import os
|
|||
import copy
|
||||
import argparse
|
||||
import yaml
|
||||
from ppcls.utils import logger
|
||||
from ppcls.utils import check
|
||||
from . import logger
|
||||
from . import check
|
||||
|
||||
__all__ = ['get_config']
|
||||
|
||||
|
||||
|
|
|
@ -28,7 +28,7 @@ import time
|
|||
from collections import OrderedDict
|
||||
from tqdm import tqdm
|
||||
|
||||
from ppcls.utils import logger
|
||||
from . import logger
|
||||
|
||||
__all__ = ['get_weights_path_from_url']
|
||||
|
||||
|
|
|
@ -20,12 +20,12 @@ import sys
|
|||
__dir__ = os.path.dirname(os.path.abspath(__file__))
|
||||
sys.path.append(os.path.abspath(os.path.join(__dir__, '../../')))
|
||||
|
||||
from ppcls.arch import build_model
|
||||
from ppcls.utils.config import parse_config, parse_args
|
||||
from ppcls.utils.save_load import load_dygraph_pretrain
|
||||
from ppcls.utils.logger import init_logger
|
||||
from ppcls.data import create_operators
|
||||
from ppcls.arch.slim import quantize_model
|
||||
from ..arch import build_model
|
||||
from .config import parse_config, parse_args
|
||||
from .save_load import load_dygraph_pretrain
|
||||
from .logger import init_logger
|
||||
from ..data import create_operators
|
||||
from ..arch.slim import quantize_model
|
||||
|
||||
|
||||
class GalleryLayer(paddle.nn.Layer):
|
||||
|
|
|
@ -23,8 +23,8 @@ import tarfile
|
|||
import tqdm
|
||||
import zipfile
|
||||
|
||||
from ppcls.arch.utils import similar_architectures
|
||||
from ppcls.utils import logger
|
||||
from ..arch.utils import similar_architectures
|
||||
from . import logger
|
||||
|
||||
__all__ = ['get']
|
||||
|
||||
|
|
|
@ -20,7 +20,7 @@ import errno
|
|||
import os
|
||||
|
||||
import paddle
|
||||
from ppcls.utils import logger
|
||||
from . import logger
|
||||
from .download import get_weights_path_from_url
|
||||
|
||||
__all__ = ['init_model', 'save_model', 'load_dygraph_pretrain']
|
||||
|
|
Loading…
Reference in New Issue