fix
parent
1a9d6229fd
commit
6d2de979d6
|
@ -27,10 +27,10 @@ Modules:
|
||||||
- name: PaddlePredictor
|
- name: PaddlePredictor
|
||||||
type: predictor
|
type: predictor
|
||||||
inference_model_dir: "./MobileNetV2_infer"
|
inference_model_dir: "./MobileNetV2_infer"
|
||||||
input_names:
|
to_model_names:
|
||||||
inputs: image
|
image: inputs
|
||||||
output_names:
|
from_model_names:
|
||||||
save_infer_model/scale_0.tmp_1: logits
|
logits: 0
|
||||||
- name: TopK
|
- name: TopK
|
||||||
type: postprocessor
|
type: postprocessor
|
||||||
k: 10
|
k: 10
|
||||||
|
|
|
@ -26,9 +26,9 @@ Modules:
|
||||||
- name: PaddlePredictor
|
- name: PaddlePredictor
|
||||||
type: predictor
|
type: predictor
|
||||||
inference_model_dir: models/product_ResNet50_vd_aliproduct_v1.0_infer
|
inference_model_dir: models/product_ResNet50_vd_aliproduct_v1.0_infer
|
||||||
input_names:
|
to_model_names:
|
||||||
x: image
|
image: x
|
||||||
output_names:
|
from_model_names:
|
||||||
save_infer_model/scale_0.tmp_1: features
|
features: 0
|
||||||
- name: FeatureNormalizer
|
- name: FeatureNormalizer
|
||||||
type: postprocessor
|
type: postprocessor
|
|
@ -20,14 +20,20 @@ def main():
|
||||||
input_data = {"input_image": img}
|
input_data = {"input_image": img}
|
||||||
data = engine.process(input_data)
|
data = engine.process(input_data)
|
||||||
|
|
||||||
# for det, cls
|
# for cls
|
||||||
# print(data)
|
if "classification_res" in data:
|
||||||
|
print(data["classification_res"])
|
||||||
|
# for det
|
||||||
|
elif "detection_res" in data:
|
||||||
|
print(data["detection_res"])
|
||||||
# for rec
|
# for rec
|
||||||
# features = data["pred"]["features"]
|
elif "features" in data["pred"]:
|
||||||
# print(features)
|
features = data["pred"]["features"]
|
||||||
# print(features.shape)
|
print(features)
|
||||||
# print(type(features))
|
print(features.shape)
|
||||||
|
print(type(features))
|
||||||
|
else:
|
||||||
|
print("ERROR")
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
|
|
@ -1,13 +1,7 @@
|
||||||
# from .postprocessor import build_postprocessor
|
from .postprocessor import build_postprocessor
|
||||||
# from .preprocessor import build_preprocessor
|
from .preprocessor import build_preprocessor
|
||||||
# from .predictor import build_predictor
|
from .predictor import build_predictor
|
||||||
|
from .searcher import build_searcher
|
||||||
import importlib
|
|
||||||
|
|
||||||
from processor.algo_mod import preprocessor
|
|
||||||
from processor.algo_mod import predictor
|
|
||||||
from processor.algo_mod import postprocessor
|
|
||||||
from processor.algo_mod import searcher
|
|
||||||
|
|
||||||
from ..base_processor import BaseProcessor
|
from ..base_processor import BaseProcessor
|
||||||
|
|
||||||
|
@ -17,20 +11,18 @@ class AlgoMod(BaseProcessor):
|
||||||
self.processors = []
|
self.processors = []
|
||||||
for processor_config in config["processors"]:
|
for processor_config in config["processors"]:
|
||||||
processor_type = processor_config.get("type")
|
processor_type = processor_config.get("type")
|
||||||
processor_name = processor_config.get("name")
|
|
||||||
_mod = importlib.import_module(__name__)
|
|
||||||
processor = getattr(
|
|
||||||
getattr(_mod, processor_type),
|
|
||||||
processor_name)(processor_config)
|
|
||||||
|
|
||||||
# if processor_type == "preprocessor":
|
if processor_type == "preprocessor":
|
||||||
# processor = build_preprocessor(processor_config)
|
processor = build_preprocessor(processor_config)
|
||||||
# elif processor_type == "predictor":
|
elif processor_type == "predictor":
|
||||||
# processor = build_predictor(processor_config)
|
processor = build_predictor(processor_config)
|
||||||
# elif processor_type == "postprocessor":
|
elif processor_type == "postprocessor":
|
||||||
# processor = build_postprocessor(processor_config)
|
processor = build_postprocessor(processor_config)
|
||||||
# else:
|
elif processor_type == "searcher":
|
||||||
# raise NotImplemented("processor type {} unknown.".format(processor_type))
|
processor = build_searcher(processor_config)
|
||||||
|
else:
|
||||||
|
raise NotImplemented("processor type {} unknown.".format(
|
||||||
|
processor_type))
|
||||||
self.processors.append(processor)
|
self.processors.append(processor)
|
||||||
|
|
||||||
def process(self, input_data):
|
def process(self, input_data):
|
||||||
|
|
|
@ -4,7 +4,8 @@ from .classification import TopK
|
||||||
from .det import DetPostPro
|
from .det import DetPostPro
|
||||||
from .rec import FeatureNormalizer
|
from .rec import FeatureNormalizer
|
||||||
|
|
||||||
# def build_postprocessor(config):
|
|
||||||
# processor_mod = importlib.import_module(__name__)
|
def build_postprocessor(config):
|
||||||
# processor_name = config.get("name")
|
processor_mod = importlib.import_module(__name__)
|
||||||
# return getattr(processor_mod, processor_name)(config)
|
processor_name = config.get("name")
|
||||||
|
return getattr(processor_mod, processor_name)(config)
|
||||||
|
|
|
@ -2,6 +2,7 @@ import os
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
|
from utils import logger
|
||||||
from ...base_processor import BaseProcessor
|
from ...base_processor import BaseProcessor
|
||||||
|
|
||||||
|
|
||||||
|
@ -20,8 +21,8 @@ class TopK(BaseProcessor):
|
||||||
return None
|
return None
|
||||||
|
|
||||||
if not os.path.exists(class_id_map_file):
|
if not os.path.exists(class_id_map_file):
|
||||||
print(
|
logger.warning(
|
||||||
"Warning: If want to use your own label_dict, please input legal path!\nOtherwise label_names will be empty!"
|
"[Classification] If want to use your own label_dict, please input legal path!\nOtherwise label_names will be empty!"
|
||||||
)
|
)
|
||||||
return None
|
return None
|
||||||
|
|
||||||
|
@ -33,36 +34,31 @@ class TopK(BaseProcessor):
|
||||||
partition = line.split("\n")[0].partition(" ")
|
partition = line.split("\n")[0].partition(" ")
|
||||||
class_id_map[int(partition[0])] = str(partition[-1])
|
class_id_map[int(partition[0])] = str(partition[-1])
|
||||||
except Exception as ex:
|
except Exception as ex:
|
||||||
print(ex)
|
logger.warning(f"[Classification] {ex}")
|
||||||
class_id_map = None
|
class_id_map = None
|
||||||
return class_id_map
|
return class_id_map
|
||||||
|
|
||||||
def process(self, data):
|
def process(self, data):
|
||||||
x = data["pred"]["logits"]
|
# TODO(gaotingquan): only support bs==1 when 'connector' is not implemented.
|
||||||
# TODO(gaotingquan): support file_name
|
probs = data["pred"]["logits"][0]
|
||||||
# if file_names is not None:
|
index = probs.argsort(axis=0)[-self.topk:][::-1].astype(
|
||||||
# assert x.shape[0] == len(file_names)
|
"int32") if not self.multilabel else np.where(
|
||||||
y = []
|
probs >= 0.5)[0].astype("int32")
|
||||||
for idx, probs in enumerate(x):
|
clas_id_list = []
|
||||||
index = probs.argsort(axis=0)[-self.topk:][::-1].astype(
|
score_list = []
|
||||||
"int32") if not self.multilabel else np.where(
|
label_name_list = []
|
||||||
probs >= 0.5)[0].astype("int32")
|
for i in index:
|
||||||
clas_id_list = []
|
clas_id_list.append(i.item())
|
||||||
score_list = []
|
score_list.append(probs[i].item())
|
||||||
label_name_list = []
|
if self.class_id_map is not None:
|
||||||
for i in index:
|
label_name_list.append(self.class_id_map[i.item()])
|
||||||
clas_id_list.append(i.item())
|
result = {
|
||||||
score_list.append(probs[i].item())
|
"class_ids": clas_id_list,
|
||||||
if self.class_id_map is not None:
|
"scores": np.around(
|
||||||
label_name_list.append(self.class_id_map[i.item()])
|
score_list, decimals=5).tolist(),
|
||||||
result = {
|
}
|
||||||
"class_ids": clas_id_list,
|
if label_name_list is not None:
|
||||||
"scores": np.around(
|
result["label_names"] = label_name_list
|
||||||
score_list, decimals=5).tolist(),
|
|
||||||
}
|
data["classification_res"] = result
|
||||||
# if file_names is not None:
|
return data
|
||||||
# result["file_name"] = file_names[idx]
|
|
||||||
if label_name_list is not None:
|
|
||||||
result["label_names"] = label_name_list
|
|
||||||
y.append(result)
|
|
||||||
return y
|
|
||||||
|
|
|
@ -11,27 +11,34 @@ class DetPostPro(BaseProcessor):
|
||||||
self.label_list = config["label_list"]
|
self.label_list = config["label_list"]
|
||||||
self.max_det_results = config["max_det_results"]
|
self.max_det_results = config["max_det_results"]
|
||||||
|
|
||||||
def process(self, input_data):
|
def process(self, data):
|
||||||
pred = input_data["pred"]
|
pred = data["pred"]
|
||||||
np_boxes = pred[list(pred.keys())[0]]
|
np_boxes = pred[list(pred.keys())[0]]
|
||||||
if reduce(lambda x, y: x * y, np_boxes.shape) < 6:
|
if reduce(lambda x, y: x * y, np_boxes.shape) >= 6:
|
||||||
logger.warning('[Detector] No object detected.')
|
keep_indexes = np_boxes[:, 1].argsort()[::-1][:
|
||||||
np_boxes = np.array([])
|
self.max_det_results]
|
||||||
|
# TODO(gaotingquan): only support bs==1
|
||||||
keep_indexes = np_boxes[:, 1].argsort()[::-1][:self.max_det_results]
|
single_res = np_boxes[0]
|
||||||
results = []
|
|
||||||
for idx in keep_indexes:
|
|
||||||
single_res = np_boxes[idx]
|
|
||||||
class_id = int(single_res[0])
|
class_id = int(single_res[0])
|
||||||
score = single_res[1]
|
score = single_res[1]
|
||||||
bbox = single_res[2:]
|
bbox = single_res[2:]
|
||||||
if score < self.threshold:
|
if score > self.threshold:
|
||||||
continue
|
label_name = self.label_list[class_id]
|
||||||
label_name = self.label_list[class_id]
|
results = {
|
||||||
results.append({
|
"class_id": class_id,
|
||||||
"class_id": class_id,
|
"score": score,
|
||||||
"score": score,
|
"bbox": bbox,
|
||||||
"bbox": bbox,
|
"label_name": label_name,
|
||||||
"label_name": label_name,
|
}
|
||||||
})
|
data["detection_res"] = results
|
||||||
return results
|
return data
|
||||||
|
|
||||||
|
logger.warning('[Detector] No object detected.')
|
||||||
|
results = {
|
||||||
|
"class_id": None,
|
||||||
|
"score": None,
|
||||||
|
"bbox": None,
|
||||||
|
"label_name": None,
|
||||||
|
}
|
||||||
|
data["detection_res"] = results
|
||||||
|
return data
|
||||||
|
|
|
@ -3,7 +3,8 @@ import importlib
|
||||||
from processor.algo_mod.predictor.paddle_predictor import PaddlePredictor
|
from processor.algo_mod.predictor.paddle_predictor import PaddlePredictor
|
||||||
from processor.algo_mod.predictor.onnx_predictor import ONNXPredictor
|
from processor.algo_mod.predictor.onnx_predictor import ONNXPredictor
|
||||||
|
|
||||||
# def build_predictor(config):
|
|
||||||
# processor_mod = importlib.import_module(__name__)
|
def build_predictor(config):
|
||||||
# processor_name = config.get("name")
|
processor_mod = importlib.import_module(__name__)
|
||||||
# return getattr(processor_mod, processor_name)(config)
|
processor_name = config.get("name")
|
||||||
|
return getattr(processor_mod, processor_name)(config)
|
||||||
|
|
|
@ -48,30 +48,40 @@ class PaddlePredictor(BaseProcessor):
|
||||||
paddle_config.switch_use_feed_fetch_ops(False)
|
paddle_config.switch_use_feed_fetch_ops(False)
|
||||||
self.predictor = create_predictor(paddle_config)
|
self.predictor = create_predictor(paddle_config)
|
||||||
|
|
||||||
if "input_names" in config and config["input_names"]:
|
if "to_model_names" in config and config["to_model_names"]:
|
||||||
self.input_name_mapping = config["input_names"]
|
self.input_name_map = {
|
||||||
|
v: k
|
||||||
|
for k, v in config["to_model_names"].items()
|
||||||
|
}
|
||||||
else:
|
else:
|
||||||
self.input_name_mapping = []
|
self.input_name_map = {}
|
||||||
if "output_names" in config and config["output_names"]:
|
if "from_model_names" in config and config["from_model_names"]:
|
||||||
self.output_name_mapping = config["output_names"]
|
self.output_name_map = config["from_model_names"]
|
||||||
else:
|
else:
|
||||||
self.output_name_mapping = []
|
self.output_name_map = {}
|
||||||
|
|
||||||
def process(self, data):
|
def process(self, data):
|
||||||
input_names = self.predictor.get_input_names()
|
input_names = self.predictor.get_input_names()
|
||||||
for input_name in input_names:
|
for input_name in input_names:
|
||||||
input_tensor = self.predictor.get_input_handle(input_name)
|
input_tensor = self.predictor.get_input_handle(input_name)
|
||||||
name = self.input_name_mapping[
|
name = self.input_name_map[
|
||||||
input_name] if input_name in self.input_name_mapping else input_name
|
input_name] if input_name in self.input_name_map else input_name
|
||||||
input_tensor.copy_from_cpu(data[name])
|
input_tensor.copy_from_cpu(data[name])
|
||||||
self.predictor.run()
|
self.predictor.run()
|
||||||
|
|
||||||
output_data = {}
|
model_output = []
|
||||||
output_names = self.predictor.get_output_names()
|
output_names = self.predictor.get_output_names()
|
||||||
for output_name in output_names:
|
for output_name in output_names:
|
||||||
output = self.predictor.get_output_handle(output_name)
|
output = self.predictor.get_output_handle(output_name)
|
||||||
name = self.output_name_mapping[
|
model_output.append((output_name, output.copy_to_cpu()))
|
||||||
output_name] if output_name in self.output_name_mapping else output_name
|
|
||||||
output_data[name] = output.copy_to_cpu()
|
if self.output_name_map:
|
||||||
|
output_data = {}
|
||||||
|
for name in self.output_name_map:
|
||||||
|
idx = self.output_name_map[name]
|
||||||
|
output_data[name] = model_output[idx][1]
|
||||||
|
else:
|
||||||
|
output_data = dict(model_output)
|
||||||
|
|
||||||
data["pred"] = output_data
|
data["pred"] = output_data
|
||||||
return data
|
return data
|
||||||
|
|
|
@ -2,7 +2,8 @@ import importlib
|
||||||
|
|
||||||
from processor.algo_mod.preprocessor.image_processor import ImageProcessor
|
from processor.algo_mod.preprocessor.image_processor import ImageProcessor
|
||||||
|
|
||||||
# def build_preprocessor(config):
|
|
||||||
# processor_mod = importlib.import_module(__name__)
|
def build_preprocessor(config):
|
||||||
# processor_name = config.get("name")
|
processor_mod = importlib.import_module(__name__)
|
||||||
# return getattr(processor_mod, processor_name)(config)
|
processor_name = config.get("name")
|
||||||
|
return getattr(processor_mod, processor_name)(config)
|
||||||
|
|
|
@ -4,11 +4,15 @@ import pickle
|
||||||
import faiss
|
import faiss
|
||||||
|
|
||||||
|
|
||||||
|
def build_searcher(config):
|
||||||
|
return Searcher(config)
|
||||||
|
|
||||||
|
|
||||||
class Searcher:
|
class Searcher:
|
||||||
def __init__(self, config):
|
def __init__(self, config):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
|
|
||||||
self.Searcher = faiss.read_index(
|
self.faiss_searcher = faiss.read_index(
|
||||||
os.path.join(config["index_dir"], "vector.index"))
|
os.path.join(config["index_dir"], "vector.index"))
|
||||||
|
|
||||||
with open(os.path.join(config["index_dir"], "id_map.pkl"), "rb") as fd:
|
with open(os.path.join(config["index_dir"], "id_map.pkl"), "rb") as fd:
|
||||||
|
@ -18,6 +22,11 @@ class Searcher:
|
||||||
|
|
||||||
def process(self, data):
|
def process(self, data):
|
||||||
features = data["features"]
|
features = data["features"]
|
||||||
scores, docs = self.Searcher.search(features, self.return_k)
|
scores, docs = self.faiss_searcher.search(features, self.return_k)
|
||||||
data["search_res"] = (scores, docs)
|
|
||||||
|
preds = {}
|
||||||
|
preds["rec_docs"] = self.id_map[docs[0][0]].split()[1]
|
||||||
|
preds["rec_scores"] = scores[0][0]
|
||||||
|
|
||||||
|
data["search_res"] = preds
|
||||||
return data
|
return data
|
||||||
|
|
Loading…
Reference in New Issue