add resnext series
parent
88600d33f8
commit
6da86dd4d7
92
hubconf.py
92
hubconf.py
|
@ -484,8 +484,6 @@ def MobileNetV2_x2_0(**kwargs):
|
|||
return model
|
||||
|
||||
|
||||
|
||||
|
||||
def MobileNetV3_large_x0_35(**kwargs):
|
||||
'''MobileNetV3_large_x0_35
|
||||
'''
|
||||
|
@ -514,7 +512,6 @@ def MobileNetV3_large_x0_5(**kwargs):
|
|||
return model
|
||||
|
||||
|
||||
|
||||
def MobileNetV3_large_x0_75(**kwargs):
|
||||
'''MobileNetV3_large_x0_75
|
||||
'''
|
||||
|
@ -543,7 +540,6 @@ def MobileNetV3_large_x1_0(**kwargs):
|
|||
return model
|
||||
|
||||
|
||||
|
||||
def MobileNetV3_large_x1_25(**kwargs):
|
||||
'''MobileNetV3_large_x1_25
|
||||
'''
|
||||
|
@ -558,7 +554,6 @@ def MobileNetV3_large_x1_25(**kwargs):
|
|||
return model
|
||||
|
||||
|
||||
|
||||
def MobileNetV3_small_x0_35(**kwargs):
|
||||
'''MobileNetV3_small_x0_35
|
||||
'''
|
||||
|
@ -573,7 +568,6 @@ def MobileNetV3_small_x0_35(**kwargs):
|
|||
return model
|
||||
|
||||
|
||||
|
||||
def MobileNetV3_small_x0_5(**kwargs):
|
||||
'''MobileNetV3_small_x0_5
|
||||
'''
|
||||
|
@ -588,7 +582,6 @@ def MobileNetV3_small_x0_5(**kwargs):
|
|||
return model
|
||||
|
||||
|
||||
|
||||
def MobileNetV3_small_x0_75(**kwargs):
|
||||
'''MobileNetV3_small_x0_75
|
||||
'''
|
||||
|
@ -603,7 +596,6 @@ def MobileNetV3_small_x0_75(**kwargs):
|
|||
return model
|
||||
|
||||
|
||||
|
||||
def MobileNetV3_small_x1_0(**kwargs):
|
||||
'''MobileNetV3_small_x1_0
|
||||
'''
|
||||
|
@ -618,7 +610,6 @@ def MobileNetV3_small_x1_0(**kwargs):
|
|||
return model
|
||||
|
||||
|
||||
|
||||
def MobileNetV3_small_x1_25(**kwargs):
|
||||
'''MobileNetV3_small_x1_25
|
||||
'''
|
||||
|
@ -633,3 +624,86 @@ def MobileNetV3_small_x1_25(**kwargs):
|
|||
return model
|
||||
|
||||
|
||||
|
||||
def ResNeXt101_32x4d(**kwargs):
|
||||
'''ResNeXt101_32x4d
|
||||
'''
|
||||
pretrained = kwargs.pop('pretrained', False)
|
||||
|
||||
model = _resnext.ResNeXt101_32x4d(**kwargs)
|
||||
if pretrained:
|
||||
assert 'ResNeXt101_32x4d' in _checkpoints, 'Not provide `ResNeXt101_32x4d` pretrained model.'
|
||||
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['ResNeXt101_32x4d'])
|
||||
model.set_state_dict(paddle.load(path))
|
||||
|
||||
return model
|
||||
|
||||
|
||||
def ResNeXt101_64x4d(**kwargs):
|
||||
'''ResNeXt101_64x4d
|
||||
'''
|
||||
pretrained = kwargs.pop('pretrained', False)
|
||||
|
||||
model = _resnext.ResNeXt101_64x4d(**kwargs)
|
||||
if pretrained:
|
||||
assert 'ResNeXt101_64x4d' in _checkpoints, 'Not provide `ResNeXt101_64x4d` pretrained model.'
|
||||
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['ResNeXt101_64x4d'])
|
||||
model.set_state_dict(paddle.load(path))
|
||||
|
||||
return model
|
||||
|
||||
|
||||
def ResNeXt152_32x4d(**kwargs):
|
||||
'''ResNeXt152_32x4d
|
||||
'''
|
||||
pretrained = kwargs.pop('pretrained', False)
|
||||
|
||||
model = _resnext.ResNeXt152_32x4d(**kwargs)
|
||||
if pretrained:
|
||||
assert 'ResNeXt152_32x4d' in _checkpoints, 'Not provide `ResNeXt152_32x4d` pretrained model.'
|
||||
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['ResNeXt152_32x4d'])
|
||||
model.set_state_dict(paddle.load(path))
|
||||
|
||||
return model
|
||||
|
||||
|
||||
def ResNeXt152_64x4d(**kwargs):
|
||||
'''ResNeXt152_64x4d
|
||||
'''
|
||||
pretrained = kwargs.pop('pretrained', False)
|
||||
|
||||
model = _resnext.ResNeXt152_64x4d(**kwargs)
|
||||
if pretrained:
|
||||
assert 'ResNeXt152_64x4d' in _checkpoints, 'Not provide `ResNeXt152_64x4d` pretrained model.'
|
||||
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['ResNeXt152_64x4d'])
|
||||
model.set_state_dict(paddle.load(path))
|
||||
|
||||
return model
|
||||
|
||||
|
||||
def ResNeXt50_32x4d(**kwargs):
|
||||
'''ResNeXt50_32x4d
|
||||
'''
|
||||
pretrained = kwargs.pop('pretrained', False)
|
||||
|
||||
model = _resnext.ResNeXt50_32x4d(**kwargs)
|
||||
if pretrained:
|
||||
assert 'ResNeXt50_32x4d' in _checkpoints, 'Not provide `ResNeXt50_32x4d` pretrained model.'
|
||||
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['ResNeXt50_32x4d'])
|
||||
model.set_state_dict(paddle.load(path))
|
||||
|
||||
return model
|
||||
|
||||
|
||||
def ResNeXt50_64x4d(**kwargs):
|
||||
'''ResNeXt50_64x4d
|
||||
'''
|
||||
pretrained = kwargs.pop('pretrained', False)
|
||||
|
||||
model = _resnext.ResNeXt50_64x4d(**kwargs)
|
||||
if pretrained:
|
||||
assert 'ResNeXt50_64x4d' in _checkpoints, 'Not provide `ResNeXt50_64x4d` pretrained model.'
|
||||
path = paddle.utils.download.get_weights_path_from_url(_checkpoints['ResNeXt50_64x4d'])
|
||||
model.set_state_dict(paddle.load(path))
|
||||
|
||||
return model
|
Loading…
Reference in New Issue