fix slim bugs

pull/1093/head
dongshuilong 2021-07-28 06:14:03 +00:00
parent b9cf8f87ab
commit 70a1fb9dd9
3 changed files with 89 additions and 10 deletions

View File

@ -61,10 +61,10 @@ cd PaddleClas
训练指令如下:
* CPU/单机单卡启动
* CPU
```bash
python3.7 deploy/slim/slim.py -m train -c ppcls/configs/slim/ResNet50_vd_quantalization.yaml -o Global.device cpu
python3.7 deploy/slim/slim.py -m train -c ppcls/configs/slim/ResNet50_vd_quantalization.yaml -o Global.device=cpu
```
其中`yaml`文件解析详见[参考文档](../../docs/zh_CN/tutorials/config_description.md)。为了保证精度,`yaml`文件中已经使用`pretrained model`.
@ -102,10 +102,10 @@ python3.7 deploy/slim/quant_post_static.py -c ppcls/configs/ImageNet/ResNet/ResN
训练指令如下:
- CPU/单机单卡启动
- CPU
```bash
python3.7 deploy/slim/slim.py -m export -c ppcls/configs/slim/ResNet50_vd_prune.yaml -o Global.device cpu
python3.7 deploy/slim/slim.py -m train -c ppcls/configs/slim/ResNet50_vd_prune.yaml -o Global.device=cpu
```
- 单机单卡/单机多卡/多机多卡启动

View File

@ -62,10 +62,10 @@ After the quantization strategy is defined, the model can be quantified.
The training command is as follow:
* CPU/Single GPU training
* CPU
```bash
python3.7 deploy/slim/slim.py -m train -c ppcls/configs/slim/ResNet50_vd_quantalization.yaml -o Global.device cpu
python3.7 deploy/slim/slim.py -m train -c ppcls/configs/slim/ResNet50_vd_quantalization.yaml -o Global.device=cpu
```
The description of `yaml` file can be found in this [doc](../../docs/en/tutorials/config_en.md). To get better accuracy, the `pretrained model`is used in `yaml`.
@ -101,10 +101,10 @@ If run successfully, the directory `quant_post_static_model` is generated in `Gl
#### 3.2 Model Pruning
- CPU/Single GPU training
- CPU
```bash
python3.7 deploy/slim/slim.py -m export -c ppcls/configs/slim/ResNet50_vd_prune.yaml -o Global.device cpu
python3.7 deploy/slim/slim.py -m train -c ppcls/configs/slim/ResNet50_vd_prune.yaml -o Global.device=cpu
```
- Distributed training

View File

@ -23,6 +23,8 @@ import paddleslim
from paddle.jit import to_static
from paddleslim.analysis import dygraph_flops as flops
import argparse
import paddle.distributed as dist
from visualdl import LogWriter
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.abspath(os.path.join(__dir__, '../../')))
@ -30,8 +32,12 @@ from paddleslim.dygraph.quant import QAT
from ppcls.engine.trainer import Trainer
from ppcls.utils import config, logger
from ppcls.utils.save_load import load_dygraph_pretrain
from ppcls.utils.logger import init_logger
from ppcls.utils.config import print_config
from ppcls.utils.save_load import load_dygraph_pretrain, load_dygraph_pretrain_from_url
from ppcls.data import build_dataloader
from ppcls.arch import apply_to_static
from ppcls.arch import build_model
quant_config = {
# weight preprocess type, default is None and no preprocessing is performed.
@ -59,7 +65,75 @@ quant_config = {
class Trainer_slim(Trainer):
def __init__(self, config, mode="train"):
super().__init__(config, mode)
self.mode = mode
self.config = config
self.output_dir = self.config['Global']['output_dir']
log_file = os.path.join(self.output_dir, self.config["Arch"]["name"],
f"{mode}.log")
init_logger(name='root', log_file=log_file)
print_config(config)
# set device
assert self.config["Global"]["device"] in ["cpu", "gpu", "xpu"]
self.device = paddle.set_device(self.config["Global"]["device"])
# set dist
self.config["Global"][
"distributed"] = paddle.distributed.get_world_size() != 1
if "Head" in self.config["Arch"]:
self.is_rec = True
else:
self.is_rec = False
self.model = build_model(self.config["Arch"])
# set @to_static for benchmark, skip this by default.
apply_to_static(self.config, self.model)
if self.config["Global"]["pretrained_model"] is not None:
if self.config["Global"]["pretrained_model"].startswith("http"):
load_dygraph_pretrain_from_url(
self.model, self.config["Global"]["pretrained_model"])
else:
load_dygraph_pretrain(
self.model, self.config["Global"]["pretrained_model"])
self.vdl_writer = None
if self.config['Global']['use_visualdl'] and mode == "train":
vdl_writer_path = os.path.join(self.output_dir, "vdl")
if not os.path.exists(vdl_writer_path):
os.makedirs(vdl_writer_path)
self.vdl_writer = LogWriter(logdir=vdl_writer_path)
logger.info('train with paddle {} and device {}'.format(
paddle.__version__, self.device))
# init members
self.train_dataloader = None
self.eval_dataloader = None
self.gallery_dataloader = None
self.query_dataloader = None
self.eval_mode = self.config["Global"].get("eval_mode",
"classification")
self.amp = True if "AMP" in self.config else False
if self.amp and self.config["AMP"] is not None:
self.scale_loss = self.config["AMP"].get("scale_loss", 1.0)
self.use_dynamic_loss_scaling = self.config["AMP"].get(
"use_dynamic_loss_scaling", False)
else:
self.scale_loss = 1.0
self.use_dynamic_loss_scaling = False
if self.amp:
AMP_RELATED_FLAGS_SETTING = {
'FLAGS_cudnn_batchnorm_spatial_persistent': 1,
'FLAGS_max_inplace_grad_add': 8,
}
paddle.fluid.set_flags(AMP_RELATED_FLAGS_SETTING)
self.train_loss_func = None
self.eval_loss_func = None
self.train_metric_func = None
self.eval_metric_func = None
self.use_dali = self.config['Global'].get("use_dali", False)
# for slim
pact = self.config["Slim"].get("quant", False)
self.pact = pact.get("name", False) if pact else pact
@ -99,6 +173,11 @@ class Trainer_slim(Trainer):
if self.quanter is None and self.pruner is None:
logger.info("Training without slim")
# for distributed training
if self.config["Global"]["distributed"]:
dist.init_parallel_env()
self.model = paddle.DataParallel(self.model)
def export_inference_model(self):
if os.path.exists(
os.path.join(self.output_dir, self.config["Arch"]["name"],