fix: rm sys.path.append in main python file
avoid to raising error when there is a foler or python file that has same name in working directorypull/2207/head
parent
fb16d1b64f
commit
72da54f001
|
@ -2,7 +2,6 @@ include LICENSE.txt
|
|||
include README.md
|
||||
include docs/en/whl_en.md
|
||||
recursive-include deploy/python *.py
|
||||
recursive-include deploy/configs *.yaml
|
||||
recursive-include deploy/utils get_image_list.py config.py logger.py predictor.py
|
||||
|
||||
recursive-include deploy/utils *.py
|
||||
recursive-include ppcls/ *.py *.txt
|
||||
recursive-include deploy/configs *.yaml
|
|
@ -11,21 +11,15 @@
|
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import os
|
||||
import sys
|
||||
|
||||
__dir__ = os.path.dirname(os.path.abspath(__file__))
|
||||
sys.path.append(os.path.abspath(os.path.join(__dir__, '../')))
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
from utils import logger
|
||||
from utils import config
|
||||
from utils.predictor import Predictor
|
||||
from utils.get_image_list import get_image_list
|
||||
from python.preprocess import create_operators
|
||||
from python.postprocess import build_postprocess
|
||||
from paddleclas.deploy.utils import logger, config
|
||||
from paddleclas.deploy.utils.predictor import Predictor
|
||||
from paddleclas.deploy.utils.get_image_list import get_image_list
|
||||
from paddleclas.deploy.python.preprocess import create_operators
|
||||
from paddleclas.deploy.python.postprocess import build_postprocess
|
||||
|
||||
|
||||
class ClsPredictor(Predictor):
|
||||
|
|
|
@ -27,9 +27,8 @@ import cv2
|
|||
import numpy as np
|
||||
import importlib
|
||||
from PIL import Image
|
||||
from paddle.vision.transforms import ToTensor, Normalize
|
||||
|
||||
from python.det_preprocess import DetNormalizeImage, DetPadStride, DetPermute, DetResize
|
||||
from .det_preprocess import DetNormalizeImage, DetPadStride, DetPermute, DetResize
|
||||
|
||||
|
||||
def create_operators(params):
|
||||
|
@ -54,14 +53,13 @@ def create_operators(params):
|
|||
|
||||
|
||||
class UnifiedResize(object):
|
||||
def __init__(self, interpolation=None, backend="cv2", return_numpy=True):
|
||||
def __init__(self, interpolation=None, backend="cv2"):
|
||||
_cv2_interp_from_str = {
|
||||
'nearest': cv2.INTER_NEAREST,
|
||||
'bilinear': cv2.INTER_LINEAR,
|
||||
'area': cv2.INTER_AREA,
|
||||
'bicubic': cv2.INTER_CUBIC,
|
||||
'lanczos': cv2.INTER_LANCZOS4,
|
||||
'random': (cv2.INTER_LINEAR, cv2.INTER_CUBIC)
|
||||
'lanczos': cv2.INTER_LANCZOS4
|
||||
}
|
||||
_pil_interp_from_str = {
|
||||
'nearest': Image.NEAREST,
|
||||
|
@ -69,26 +67,13 @@ class UnifiedResize(object):
|
|||
'bicubic': Image.BICUBIC,
|
||||
'box': Image.BOX,
|
||||
'lanczos': Image.LANCZOS,
|
||||
'hamming': Image.HAMMING,
|
||||
'random': (Image.BILINEAR, Image.BICUBIC)
|
||||
'hamming': Image.HAMMING
|
||||
}
|
||||
|
||||
def _cv2_resize(src, size, resample):
|
||||
if isinstance(resample, tuple):
|
||||
resample = random.choice(resample)
|
||||
return cv2.resize(src, size, interpolation=resample)
|
||||
|
||||
def _pil_resize(src, size, resample, return_numpy=True):
|
||||
if isinstance(resample, tuple):
|
||||
resample = random.choice(resample)
|
||||
if isinstance(src, np.ndarray):
|
||||
pil_img = Image.fromarray(src)
|
||||
else:
|
||||
pil_img = src
|
||||
def _pil_resize(src, size, resample):
|
||||
pil_img = Image.fromarray(src)
|
||||
pil_img = pil_img.resize(size, resample)
|
||||
if return_numpy:
|
||||
return np.asarray(pil_img)
|
||||
return pil_img
|
||||
return np.asarray(pil_img)
|
||||
|
||||
if backend.lower() == "cv2":
|
||||
if isinstance(interpolation, str):
|
||||
|
@ -96,12 +81,11 @@ class UnifiedResize(object):
|
|||
# compatible with opencv < version 4.4.0
|
||||
elif interpolation is None:
|
||||
interpolation = cv2.INTER_LINEAR
|
||||
self.resize_func = partial(_cv2_resize, resample=interpolation)
|
||||
self.resize_func = partial(cv2.resize, interpolation=interpolation)
|
||||
elif backend.lower() == "pil":
|
||||
if isinstance(interpolation, str):
|
||||
interpolation = _pil_interp_from_str[interpolation.lower()]
|
||||
self.resize_func = partial(
|
||||
_pil_resize, resample=interpolation, return_numpy=return_numpy)
|
||||
self.resize_func = partial(_pil_resize, resample=interpolation)
|
||||
else:
|
||||
logger.warning(
|
||||
f"The backend of Resize only support \"cv2\" or \"PIL\". \"f{backend}\" is unavailable. Use \"cv2\" instead."
|
||||
|
@ -109,8 +93,6 @@ class UnifiedResize(object):
|
|||
self.resize_func = cv2.resize
|
||||
|
||||
def __call__(self, src, size):
|
||||
if isinstance(size, list):
|
||||
size = tuple(size)
|
||||
return self.resize_func(src, size)
|
||||
|
||||
|
||||
|
@ -155,8 +137,7 @@ class ResizeImage(object):
|
|||
size=None,
|
||||
resize_short=None,
|
||||
interpolation=None,
|
||||
backend="cv2",
|
||||
return_numpy=True):
|
||||
backend="cv2"):
|
||||
if resize_short is not None and resize_short > 0:
|
||||
self.resize_short = resize_short
|
||||
self.w = None
|
||||
|
@ -170,18 +151,10 @@ class ResizeImage(object):
|
|||
'both 'size' and 'resize_short' are None")
|
||||
|
||||
self._resize_func = UnifiedResize(
|
||||
interpolation=interpolation,
|
||||
backend=backend,
|
||||
return_numpy=return_numpy)
|
||||
interpolation=interpolation, backend=backend)
|
||||
|
||||
def __call__(self, img):
|
||||
if isinstance(img, np.ndarray):
|
||||
# numpy input
|
||||
img_h, img_w = img.shape[:2]
|
||||
else:
|
||||
# PIL image input
|
||||
img_w, img_h = img.size
|
||||
|
||||
img_h, img_w = img.shape[:2]
|
||||
if self.resize_short is not None:
|
||||
percent = float(self.resize_short) / min(img_w, img_h)
|
||||
w = int(round(img_w * percent))
|
||||
|
|
|
@ -17,7 +17,7 @@ import copy
|
|||
import argparse
|
||||
import yaml
|
||||
|
||||
from utils import logger
|
||||
from . import logger
|
||||
|
||||
__all__ = ['get_config']
|
||||
|
||||
|
|
|
@ -16,7 +16,6 @@ import os
|
|||
import sys
|
||||
__dir__ = os.path.dirname(__file__)
|
||||
sys.path.append(os.path.join(__dir__, ""))
|
||||
sys.path.append(os.path.join(__dir__, "deploy"))
|
||||
|
||||
from typing import Union, Generator
|
||||
import argparse
|
||||
|
@ -33,12 +32,16 @@ from tqdm import tqdm
|
|||
from prettytable import PrettyTable
|
||||
import paddle
|
||||
|
||||
import ppcls.arch.backbone as backbone
|
||||
from ppcls.utils import logger
|
||||
|
||||
from deploy.python.predict_cls import ClsPredictor
|
||||
from deploy.utils.get_image_list import get_image_list
|
||||
from deploy.utils import config
|
||||
|
||||
import ppcls.arch.backbone as backbone
|
||||
from ppcls.utils import logger
|
||||
import deploy
|
||||
import ppcls
|
||||
# 'deploy.python', 'deploy.utils', 'ppcls.arch', 'ppcls.utils'
|
||||
|
||||
# for building model with loading pretrained weights from backbone
|
||||
logger.init_logger()
|
||||
|
|
Loading…
Reference in New Issue