mirror of
https://github.com/PaddlePaddle/PaddleClas.git
synced 2025-06-03 21:55:06 +08:00
Support for multiple components when build optimizer
This commit is contained in:
parent
8ae8934358
commit
74b4574367
@ -67,12 +67,13 @@ def build_optimizer(config, epochs, step_each_epoch, model_list=None):
|
|||||||
# optim_cfg = {optim_name: {'scope': xxx, **optim_cfg}}
|
# optim_cfg = {optim_name: {'scope': xxx, **optim_cfg}}
|
||||||
# step1 build lr
|
# step1 build lr
|
||||||
optim_name = list(optim_item.keys())[0] # get optim_name
|
optim_name = list(optim_item.keys())[0] # get optim_name
|
||||||
optim_scope = optim_item[optim_name].pop('scope') # get optim_scope
|
optim_scope_list = optim_item[optim_name].pop('scope').split(
|
||||||
|
' ') # get optim_scope list
|
||||||
optim_cfg = optim_item[optim_name] # get optim_cfg
|
optim_cfg = optim_item[optim_name] # get optim_cfg
|
||||||
|
|
||||||
lr = build_lr_scheduler(optim_cfg.pop('lr'), epochs, step_each_epoch)
|
lr = build_lr_scheduler(optim_cfg.pop('lr'), epochs, step_each_epoch)
|
||||||
logger.info("build lr ({}) for scope ({}) success..".format(
|
logger.info("build lr ({}) for scope ({}) success..".format(
|
||||||
lr.__class__.__name__, optim_scope))
|
lr.__class__.__name__, optim_scope_list))
|
||||||
# step2 build regularization
|
# step2 build regularization
|
||||||
if 'regularizer' in optim_cfg and optim_cfg['regularizer'] is not None:
|
if 'regularizer' in optim_cfg and optim_cfg['regularizer'] is not None:
|
||||||
if 'weight_decay' in optim_cfg:
|
if 'weight_decay' in optim_cfg:
|
||||||
@ -84,11 +85,13 @@ def build_optimizer(config, epochs, step_each_epoch, model_list=None):
|
|||||||
reg = getattr(paddle.regularizer, reg_name)(**reg_config)
|
reg = getattr(paddle.regularizer, reg_name)(**reg_config)
|
||||||
optim_cfg["weight_decay"] = reg
|
optim_cfg["weight_decay"] = reg
|
||||||
logger.info("build regularizer ({}) for scope ({}) success..".
|
logger.info("build regularizer ({}) for scope ({}) success..".
|
||||||
format(reg.__class__.__name__, optim_scope))
|
format(reg.__class__.__name__, optim_scope_list))
|
||||||
# step3 build optimizer
|
# step3 build optimizer
|
||||||
if 'clip_norm' in optim_cfg:
|
if 'clip_norm' in optim_cfg:
|
||||||
clip_norm = optim_cfg.pop('clip_norm')
|
clip_norm = optim_cfg.pop('clip_norm')
|
||||||
grad_clip = paddle.nn.ClipGradByNorm(clip_norm=clip_norm)
|
grad_clip = paddle.nn.ClipGradByNorm(clip_norm=clip_norm)
|
||||||
|
logger.info("build gradclip ({}) for scope ({}) success..".format(
|
||||||
|
grad_clip.__class__.__name__, optim_scope_list))
|
||||||
else:
|
else:
|
||||||
grad_clip = None
|
grad_clip = None
|
||||||
optim_model = []
|
optim_model = []
|
||||||
@ -101,33 +104,34 @@ def build_optimizer(config, epochs, step_each_epoch, model_list=None):
|
|||||||
return optim, lr
|
return optim, lr
|
||||||
|
|
||||||
# for dynamic graph
|
# for dynamic graph
|
||||||
if optim_scope == "all":
|
for scope in optim_scope_list:
|
||||||
optim_model = model_list
|
if scope == "all":
|
||||||
elif optim_scope == "model":
|
optim_model += model_list
|
||||||
optim_model = [model_list[0], ]
|
elif scope == "model":
|
||||||
elif optim_scope in ["backbone", "neck", "head"]:
|
optim_model += [model_list[0], ]
|
||||||
optim_model = [getattr(model_list[0], optim_scope, None), ]
|
elif scope in ["backbone", "neck", "head"]:
|
||||||
elif optim_scope == "loss":
|
optim_model += [getattr(model_list[0], scope, None), ]
|
||||||
optim_model = [model_list[1], ]
|
elif scope == "loss":
|
||||||
|
optim_model += [model_list[1], ]
|
||||||
else:
|
else:
|
||||||
optim_model = [
|
optim_model += [
|
||||||
model_list[1].loss_func[i]
|
model_list[1].loss_func[i]
|
||||||
for i in range(len(model_list[1].loss_func))
|
for i in range(len(model_list[1].loss_func))
|
||||||
if model_list[1].loss_func[i].__class__.__name__ == optim_scope
|
if model_list[1].loss_func[i].__class__.__name__ == scope
|
||||||
]
|
]
|
||||||
|
# remove invalid items
|
||||||
optim_model = [
|
optim_model = [
|
||||||
optim_model[i] for i in range(len(optim_model))
|
optim_model[i] for i in range(len(optim_model))
|
||||||
if (optim_model[i] is not None
|
if (optim_model[i] is not None
|
||||||
) and (len(optim_model[i].parameters()) > 0)
|
) and (len(optim_model[i].parameters()) > 0)
|
||||||
]
|
]
|
||||||
assert len(optim_model) > 0, \
|
assert len(optim_model) > 0, \
|
||||||
f"optim_model is empty for optim_scope({optim_scope})"
|
f"optim_model is empty for optim_scope({optim_scope_list})"
|
||||||
|
|
||||||
optim = getattr(optimizer, optim_name)(
|
optim = getattr(optimizer, optim_name)(
|
||||||
learning_rate=lr, grad_clip=grad_clip,
|
learning_rate=lr, grad_clip=grad_clip,
|
||||||
**optim_cfg)(model_list=optim_model)
|
**optim_cfg)(model_list=optim_model)
|
||||||
logger.info("build optimizer ({}) for scope ({}) success..".format(
|
logger.info("build optimizer ({}) for scope ({}) success..".format(
|
||||||
optim.__class__.__name__, optim_scope))
|
optim.__class__.__name__, optim_scope_list))
|
||||||
optim_list.append(optim)
|
optim_list.append(optim)
|
||||||
lr_list.append(lr)
|
lr_list.append(lr)
|
||||||
return optim_list, lr_list
|
return optim_list, lr_list
|
||||||
|
Loading…
x
Reference in New Issue
Block a user